Service ORL, Unité Fonctionnelle Implants Auditifs, Sorbonne Université/AP-HP, GHU Pitié-Salpêtrière, Bâtiment Babinski, 52, Boulevard Vincent Auriol, 75013, Paris, France.
Technologie et Thérapie Génique de la Surdité, Inserm/Institut Pasteur, Institut de l'Audition, Paris, France.
Eur Arch Otorhinolaryngol. 2021 Nov;278(11):4269-4277. doi: 10.1007/s00405-020-06553-z. Epub 2021 Jan 3.
To evaluate the forces involved in different manipulations, manual or robot-assisted, applied to the ossicular chain, on normal temporal bones and on an anatomical model of otosclerosis.
Thirteen cadaveric temporal bones, with mobile footplates or with footplates that were fixed using hydroxyapatite cement, were manipulated, manually or using a robotic arm (RobOtol®). "Short contact" of a mobile footplate was the weakest interaction on the incus. "Long contact" was the same manipulation held for 10 s. "Mobilization" was the smallest visualized movement of the mobile footplate, or the movement necessary to regain mobility of the fixed footplate. A six-axis force sensor (Nano17, ATI) measured the maximal peak of forces, summation of forces applied, and yank.
Maximal forces during short (4 mN) and long contact (15 mN) were similar for manual and robot-assisted manipulations. For manual manipulation, yank measured during long contact was twice as high compared to robot-assisted manipulation: 6 ± 2.4 (n = 5) and 3 ± 1.3 mN/s (n = 5), respectively (mean ± SD, p < 0.02). For mobilization of the mobile footplate, maximal forces during mobilization were similar during manual and robot-assisted manipulations, respectively: 12 ± 2.5 (n = 6) and 19 ± 7.6 mN (n = 7). Compared with mobilization of a mobile footplate, mobilization of a fixed footplate required ~ 60 and ~ 27 times higher maximal forces for manual and robot-assisted manipulations, respectively: 724 ± 366.4 and 507 ± 283.2 mN. Yank was twice as high during manual manipulation compared to robot-assisted manipulation (p < 0.05).
Robot-assisted manipulation of the ossicular chain was reliable. Our anatomical model of otosclerosis was successfully developed requiring higher forces for stapes mobilization.
评估在正常颞骨和耳硬化症解剖模型上,对听骨链进行手动或机器人辅助的不同操作(包括短接触、长接触和移动)所涉及的力。
对 13 个尸头颞骨进行操作,其中一些镫骨底板活动,一些使用羟基磷灰石水泥固定。手动或使用机械臂(RobOtol®)进行“短接触”,这是活动镫骨底板上最弱的相互作用。“长接触”则是保持 10 秒的相同操作。“移动”是活动镫骨底板的最小可视移动,或恢复固定镫骨底板活动所需的移动。六轴力传感器(Nano17,ATI)测量最大峰值力、合力和牵引力。
手动和机器人辅助操作的短接触(4mN)和长接触(15mN)时的最大力相似。对于手动操作,长接触时的牵引力是机器人辅助操作的两倍:6 ± 2.4(n = 5)和 3 ± 1.3 mN/s(n = 5)(平均值 ± 标准差,p < 0.02)。对于活动镫骨底板的移动,手动和机器人辅助操作的最大力相似,分别为 12 ± 2.5(n = 6)和 19 ± 7.6 mN(n = 7)。与活动镫骨底板的移动相比,手动和机器人辅助操作的固定镫骨底板的移动分别需要60 倍和27 倍更高的最大力:724 ± 366.4 和 507 ± 283.2 mN。与机器人辅助操作相比,手动操作的牵引力高两倍(p < 0.05)。
机器人辅助的听骨链操作是可靠的。我们成功开发了耳硬化症解剖模型,需要更高的力来移动镫骨。