Wang Xianwei, Bürgi Thomas
Department of Physical Chemistry, University of Geneva, 1211, Geneva 4, Switzerland.
Angew Chem Int Ed Engl. 2021 Mar 29;60(14):7860-7865. doi: 10.1002/anie.202015520. Epub 2021 Mar 1.
Carbonic acid, H CO , is of fundamental importance in nature both in living and non-living systems. Providing direct spectroscopic evidence for carbonic acid formation is however a challenge. Here we provide clear evidence by in situ attenuated total reflection IR spectroscopy combined with modulation excitation spectroscopy and phase-sensitive detection that CO adsorption on ice surfaces is accompanied by carbonic acid formation. We demonstrate that carbonic acid can be formed from CO on ice in the absence of high-energy irradiation and without protonation by strong acids. The formation of carbonic acid is favored at low temperature, whereas at high temperature it rapidly dissociates to form bicarbonate (HCO ) and carbonate (CO ). The direct formation of carbonic acid from adsorption of CO on ice could play a role in the upper troposphere in cirrus clouds, where all the necessary ingredients to form carbonic acid, that is, low temperature, CO gas, and ice, are present.
碳酸(H₂CO₃)在自然界的生物和非生物系统中都具有至关重要的意义。然而,为碳酸的形成提供直接的光谱证据是一项挑战。在这里,我们通过原位衰减全反射红外光谱结合调制激发光谱和相敏检测提供了明确的证据,表明CO在冰表面的吸附伴随着碳酸的形成。我们证明,在没有高能辐射且没有强酸质子化的情况下,CO可以在冰上形成碳酸。碳酸的形成在低温下更有利,而在高温下它会迅速解离形成碳酸氢根(HCO₃⁻)和碳酸根(CO₃²⁻)。CO在冰上吸附直接形成碳酸可能在对流层上部的卷云中起作用,在那里存在形成碳酸所需的所有必要成分,即低温、CO气体和冰。