Suppr超能文献

银纳米粒子通过 PI3K/AKT/mTOR 信号通路诱导 HT22 细胞自噬和凋亡从而产生细胞毒性。

Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway.

机构信息

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

出版信息

Ecotoxicol Environ Saf. 2021 Jan 15;208:111696. doi: 10.1016/j.ecoenv.2020.111696. Epub 2020 Dec 4.

Abstract

With the widespread application and inevitable environmental exposure, silver nanoparticles (AgNPs) can be accumulated in various organs. More serious concerns are raised on the biological safety and potential toxicity of AgNPs in the central nervous system (CNS), especially in the hippocampus. This study aimed to investigate the biological effects and the role of PI3K/AKT/mTOR signaling pathway in AgNPs mediated cytotoxicity using the mouse hippocampal neuronal cell line (HT22 cells). AgNPs reduced cell viability and induced membrane leakage in a dose-dependent manner, determined by the MTT and LDH assay. In doses of 25, 50, 100 μg mL for 24 h, AgNPs promoted the excessive production of reactive oxygen species (ROS) and caused the oxidative stress in HT22 cells. AgNPs induced autophagy, determined by the transmission electron microscopy observation, upregulation of LC3 II/I and downregulation of p62 expression levels. The mechanistic investigation showed that the PI3K/AKT/mTOR signaling pathway was activated by phosphorylation, which was enrolled in an AgNP-induced autophagy process. AgNPs could further trigger the apoptosis by upregulation of caspase-3 and Bax and downregulation of Bcl-2 in HT22 cells. These results revealed AgNP-induced cytotoxicity in HT22 cells, which was mediated by autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. The study could provide the experimental evidence and explanation for the potential neurotoxicity triggered by AgNPs in vitro.

摘要

随着广泛的应用和不可避免的环境暴露,银纳米颗粒(AgNPs)可能会在各种器官中积累。人们对 AgNPs 在中枢神经系统(CNS)中的生物安全性和潜在毒性,特别是在海马体中,更加关注。本研究旨在使用小鼠海马神经元细胞系(HT22 细胞)研究 AgNPs 介导的细胞毒性的生物学效应及 PI3K/AKT/mTOR 信号通路的作用。MTT 和 LDH 测定结果表明,AgNPs 以剂量依赖的方式降低细胞活力并诱导膜渗漏。在 25、50、100μg/mL 剂量下孵育 24 h,AgNPs 促进活性氧(ROS)的过度产生并导致 HT22 细胞发生氧化应激。透射电子显微镜观察结果表明,AgNPs 诱导自噬,表现为 LC3 II/I 上调和 p62 表达水平下调。机制研究表明,PI3K/AKT/mTOR 信号通路被磷酸化激活,参与了 AgNP 诱导的自噬过程。AgNPs 还可以通过上调 caspase-3 和 Bax 以及下调 Bcl-2 来进一步触发 HT22 细胞的凋亡。这些结果表明,AgNP 诱导 HT22 细胞发生细胞毒性,通过 PI3K/AKT/mTOR 信号通路介导自噬和凋亡。该研究为 AgNPs 在体外引发的潜在神经毒性提供了实验依据和解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验