Suppr超能文献

低温下316L奥氏体不锈钢断裂诱导的相变:实验与建模

Phase Transformation in 316L Austenitic Steel Induced by Fracture at Cryogenic Temperatures: Experiment and Modelling.

作者信息

Nalepka Kinga, Skoczeń Błażej, Ciepielowska Marlena, Schmidt Rafał, Tabin Jakub, Schmidt Elwira, Zwolińska-Faryj Weronika, Chulist Robert

机构信息

Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Krakow, Poland.

Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Krakow, Poland.

出版信息

Materials (Basel). 2020 Dec 30;14(1):127. doi: 10.3390/ma14010127.

Abstract

Investigations by electron backscatter diffraction (EBSD) and X-ray diffraction with the use of synchrotron radiation, as well as parallel extended finite element (XFEM) simulations, reveal the evolution of the 316L stainless steel microstructure in the vicinity of a macro-crack developing at the temperature of liquid helium (4.2 K). The fracture propagation induces a dynamic, highly localized phase transformation of face-centred cubic austenite into α' martensite with a body-centred cubic structure. Synchrotron studies show that the texture of the primary phase controls the transition process. The austenite grains, tending to the stable Brass orientation, generate three mechanisms of the phase transformation. EBSD studies reveal that the secondary phase particles match the ordered austenitic matrix. Hence, interphase boundaries with the Pitsch disorientation are most often formed and α' martensite undergoes intensive twinning. The XFEM simulations, based on the experimentally determined kinetics of the phase transformation and on the relevant constitutive relationships, reveal that the macro-crack propagates mainly in the martensitic phase. Synchrotron and EBSD studies confirm the almost 100% content of the secondary phase at the fracture surface. Moreover, they indicate that the boundaries formed then are largely random. As a result, the primary beneficial role of martensite as reinforcing particles is eliminated.

摘要

通过电子背散射衍射(EBSD)、利用同步辐射的X射线衍射以及并行扩展有限元(XFEM)模拟进行的研究,揭示了在液氦温度(4.2 K)下宏观裂纹扩展附近316L不锈钢微观结构的演变。裂纹扩展引发了面心立方奥氏体向体心立方结构的α'马氏体的动态、高度局部化的相变。同步辐射研究表明,初生相的织构控制着转变过程。倾向于稳定黄铜取向的奥氏体晶粒产生了三种相变机制。EBSD研究表明,次生相颗粒与有序奥氏体基体相匹配。因此,最常形成具有皮茨取向差的相间边界,并且α'马氏体经历强烈的孪生。基于实验确定的相变动力学和相关本构关系的XFEM模拟表明,宏观裂纹主要在马氏体相中扩展。同步辐射和EBSD研究证实,断口表面次生相的含量几乎为100%。此外,它们表明此时形成的边界在很大程度上是随机的。结果,马氏体作为增强颗粒的主要有益作用被消除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f04/7795462/3c31fd37de13/materials-14-00127-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验