Suppr超能文献

用于提高采收率的混合CO/N泡沫:砂岩油藏中超临界CO泡沫难题的新型解决方案

Mixed CO/N Foam for EOR as a Novel Solution for Supercritical CO Foam Challenges in Sandstone Reservoirs.

作者信息

Abdelaal Ahmed, Gajbhiye Rahul, Al-Shehri Dhafer

机构信息

Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

ACS Omega. 2020 Dec 14;5(51):33140-33150. doi: 10.1021/acsomega.0c04801. eCollection 2020 Dec 29.

Abstract

Among the various enhanced oil recovery (EOR) processes, CO injection has been widely utilized for oil displacement in EOR. Unfortunately, gas injection suffers from gravity override and high mobility, which reduces the sweep efficiency and oil recovery. Foams can counter these problems by reducing gas mobility, which significantly increases the macroscopic sweep efficiency and results in higher recovery. Nevertheless, CO is unable to generate foam or strong foam above its supercritical conditions (for CO, 1100 psi at 31.1 °C), and most of the reservoirs exist at higher temperatures and pressure than CO supercritical conditions. The formation of strong CO foam becomes more difficult with an increase in pressure and temperature above its supercritical conditions and exacerbated CO-foam properties. These difficulties can be overcome by replacing a portion of CO with N because a mixture of N and CO gases can generate foam or strong foam above CO supercritical conditions. Although many researchers have investigated EOR by using CO or N foam separately, the performance of mixed CO/N foam on EOR has not been investigated. This study provides a solution to generate CO foam above its supercritical conditions by replacing part of CO with N (mixed CO/N foam). The mixed foam not only generates strong foam above CO supercritical conditions but also remarkably increases the oil recovery. This solution overcomes the difficulties associated with the formation of CO foam at HPHT conditions enabling the use of the CO-foam system for effective EOR and other applications of CO foam such as conformance control.

摘要

在各种提高采收率(EOR)工艺中,注二氧化碳已广泛用于EOR中的驱油。不幸的是,注气存在重力超覆和高流度问题,这会降低波及效率和采收率。泡沫可以通过降低气体流度来解决这些问题,这会显著提高宏观波及效率并带来更高的采收率。然而,二氧化碳在其超临界条件以上(对于二氧化碳,在31.1℃时为1100磅力/平方英寸)无法产生泡沫或强泡沫,并且大多数油藏的温度和压力高于二氧化碳的超临界条件。随着压力和温度在其超临界条件以上升高以及二氧化碳泡沫性质恶化,形成强二氧化碳泡沫变得更加困难。通过用氮气替代部分二氧化碳可以克服这些困难,因为氮气和二氧化碳气体的混合物在二氧化碳超临界条件以上可以产生泡沫或强泡沫。尽管许多研究人员分别研究了使用二氧化碳或氮气泡沫进行EOR,但混合二氧化碳/氮气泡沫在EOR方面的性能尚未得到研究。本研究提供了一种通过用氮气替代部分二氧化碳(混合二氧化碳/氮气泡沫)在二氧化碳超临界条件以上产生二氧化碳泡沫的解决方案。这种混合泡沫不仅在二氧化碳超临界条件以上产生强泡沫,而且显著提高了采收率。该解决方案克服了在高温高压条件下形成二氧化碳泡沫的困难,可以使用二氧化碳泡沫系统进行有效的EOR以及二氧化碳泡沫的其他应用,如调剖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/965d/7774268/9d2f13b53810/ao0c04801_0002.jpg

相似文献

1
Mixed CO/N Foam for EOR as a Novel Solution for Supercritical CO Foam Challenges in Sandstone Reservoirs.
ACS Omega. 2020 Dec 14;5(51):33140-33150. doi: 10.1021/acsomega.0c04801. eCollection 2020 Dec 29.
3
Effect of CO/N Mixture Composition on Interfacial Tension of Crude Oil.
ACS Omega. 2020 Oct 21;5(43):27944-27952. doi: 10.1021/acsomega.0c03326. eCollection 2020 Nov 3.
4
Pore- and Core-Scale Insights of Nanoparticle-Stabilized Foam for CO-Enhanced Oil Recovery.
Nanomaterials (Basel). 2020 Sep 25;10(10):1917. doi: 10.3390/nano10101917.
5
Carbon Dioxide Applications for Enhanced Oil Recovery Assisted by Nanoparticles: Recent Developments.
ACS Omega. 2022 Mar 18;7(12):9984-9994. doi: 10.1021/acsomega.1c07123. eCollection 2022 Mar 29.
6
Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
Langmuir. 2022 Mar 8;38(9):2895-2905. doi: 10.1021/acs.langmuir.1c03301. Epub 2022 Feb 22.
7
Chemical-Assisted CO Water-Alternating-Gas Injection for Enhanced Sweep Efficiency in CO-EOR.
Molecules. 2024 Aug 22;29(16):3978. doi: 10.3390/molecules29163978.
9
Data-driven prediction of CO foam strength for enhanced oil recovery and carbon sequestration.
RSC Adv. 2022 Dec 14;12(55):35703-35711. doi: 10.1039/d2ra05841c. eCollection 2022 Dec 12.

引用本文的文献

1
Enhanced carbon utilization and storage: An application of nonionic-based binary surfactant CO foam.
Heliyon. 2025 Feb 11;11(4):e42561. doi: 10.1016/j.heliyon.2025.e42561. eCollection 2025 Feb 28.
2
Effect of CO Concentration on the Performance of Polymer-Enhanced Foam at the Steam Front.
Polymers (Basel). 2024 Sep 26;16(19):2726. doi: 10.3390/polym16192726.
3
Experimental Study on Enhanced Oil Recovery Effect of Profile Control System-Assisted Steam Flooding.
Polymers (Basel). 2023 Nov 24;15(23):4524. doi: 10.3390/polym15234524.
4
Investigation of Foam Flooding Assisted by Non-Newtonian and Novel Newtonian Viscosifying Agents for Enhanced Oil Recovery.
ACS Omega. 2022 Dec 23;8(1):297-310. doi: 10.1021/acsomega.2c04457. eCollection 2023 Jan 10.

本文引用的文献

1
Pore-level mechanics of foam generation and coalescence in the presence of oil.
Adv Colloid Interface Sci. 2016 Jul;233:65-82. doi: 10.1016/j.cis.2015.10.008. Epub 2015 Oct 21.
2
Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
J Colloid Interface Sci. 2016 Jan 15;462:288-96. doi: 10.1016/j.jcis.2015.10.017. Epub 2015 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验