Lee Won-June, Choi Jun-Gyu, Sung Sujin, Kim Chang-Hyun, Na Sekwon, Joo Young-Chang, Park Sungjun, Yoon Myung-Han
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2820-2828. doi: 10.1021/acsami.0c18118. Epub 2021 Jan 6.
In this research, we report the rapid and reliable formation of high-performance nanoscale bilayer oxide dielectrics on silicon substrates via low-temperature deep ultraviolet (DUV) photoactivation. The optical analysis of sol-gel aluminum oxide films prepared at various concentrations reveals the processable film thickness with DUV photoactivation and its possible generalization to the formation of various metal oxide films on silicon substrates. The physicochemical and electrical characterizations confirm that DUV photoactivation accelerates the efficient formation of a highly dense aluminum oxide and aluminum silicate bilayer (17 nm) on heavily doped silicon at 150 °C within 5 min owing to the efficient thermal conduction on silicon, resulting in excellent dielectric properties in terms of low leakage current (∼10 A/cm at 1.0 MV/cm) and high areal capacitance (∼0.4 μF/cm at 100 kHz) with narrow statistical distributions. Additionally, the sol-gel bilayer oxide dielectrics are successfully combined with a sol-gel indium-gallium-zinc oxide semiconductor via two successive DUV photoactivation cycles, leading to the efficient fabrication of solution-processed oxide thin-film transistors on silicon substrates with an operational voltage below 0.5 V. We expect that in combination with large-area printing, the bilayer oxide dielectrics are beneficial for large-area solution-based oxide electronics on silicon substrates, while DUV photoactivation can be applied to various types of solution-processed functional metal oxides such as phase-transition memories, ferroelectrics, photocatalysts, charge-transporting interlayers and passivation layers, etc. on silicon substrates.
在本研究中,我们报告了通过低温深紫外(DUV)光活化在硅衬底上快速且可靠地形成高性能纳米级双层氧化物电介质。对在不同浓度下制备的溶胶 - 凝胶氧化铝薄膜进行光学分析,揭示了DUV光活化可加工的薄膜厚度,以及其在硅衬底上形成各种金属氧化物薄膜的可能性。物理化学和电学表征证实,由于硅上的高效热传导,DUV光活化在150°C下5分钟内加速了在重掺杂硅上高效形成高度致密的氧化铝和硅酸铝双层(17纳米),从而在低漏电流(在1.0 MV/cm下约为10 A/cm)和高面电容(在100 kHz下约为0.4 μF/cm)方面具有优异的介电性能,且统计分布狭窄。此外,溶胶 - 凝胶双层氧化物电介质通过两个连续的DUV光活化循环成功地与溶胶 - 凝胶铟镓锌氧化物半导体结合,从而在硅衬底上高效制造出工作电压低于0.5 V的溶液处理氧化物薄膜晶体管。我们预计,结合大面积印刷,双层氧化物电介质有利于在硅衬底上进行大面积基于溶液的氧化物电子学,而DUV光活化可应用于硅衬底上的各种类型的溶液处理功能金属氧化物,如相变存储器、铁电体、光催化剂、电荷传输中间层和钝化层等。