Suppr超能文献

非编码RNA:肝细胞癌葡萄糖代谢的新兴调节因子

Non-coding RNAs: emerging regulators of glucose metabolism in hepatocellular carcinoma.

作者信息

Lai Yongting, Huang Hairong, Abudoureyimu Mubalake, Lin Xinrong, Tian Chuan, Wang Ting, Chu Xiaoyuan, Wang Rui

机构信息

Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University Nanjing, China.

Department of Cardiothoracic Surgery, Jinling Hospital Nanjing, China.

出版信息

Am J Cancer Res. 2020 Dec 1;10(12):4066-4084. eCollection 2020.

Abstract

Reprogramming of metabolism is one of the hallmarks of cancer, among which glucose metabolism dysfunction is the most prominent feature. The glucose metabolism of tumor cells is significantly different from that of normal cells. Glucose metabolism reprogramming of hepatocellular carcinoma (HCC) has become an important research hotspot in the field of HCC, a variety of tumor metabolic interventions have been applied clinically. Moreover, various Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding (lncRNAs) as well as circular RNAs (circRNAs), have recently been proved to play potential roles in glucose metabolism. This review summarizes the effects of ncRNAs on HCC that participate in glucose metabolism and discuss the related mechanisms to find potential and effective targeted treatments for HCC.

摘要

代谢重编程是癌症的标志之一,其中葡萄糖代谢功能障碍是最突出的特征。肿瘤细胞的葡萄糖代谢与正常细胞显著不同。肝细胞癌(HCC)的葡萄糖代谢重编程已成为HCC领域的一个重要研究热点,多种肿瘤代谢干预措施已应用于临床。此外,最近已证明包括微小RNA(miRNA)、长链非编码RNA(lncRNA)以及环状RNA(circRNA)在内的各种非编码RNA(ncRNA)在葡萄糖代谢中发挥潜在作用。本综述总结了ncRNA对参与葡萄糖代谢的HCC的影响,并探讨相关机制,以寻找针对HCC的潜在有效靶向治疗方法。

相似文献

1
Non-coding RNAs: emerging regulators of glucose metabolism in hepatocellular carcinoma.
Am J Cancer Res. 2020 Dec 1;10(12):4066-4084. eCollection 2020.
2
Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma.
Front Oncol. 2019 Nov 5;9:1156. doi: 10.3389/fonc.2019.01156. eCollection 2019.
3
The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma.
Mol Ther Nucleic Acids. 2020 Sep 4;21:13-27. doi: 10.1016/j.omtn.2020.05.011. Epub 2020 May 15.
4
Emerging roles of non-coding RNAs in the metabolic reprogramming of tumor-associated macrophages.
Immunol Lett. 2021 Apr;232:27-34. doi: 10.1016/j.imlet.2021.02.003. Epub 2021 Feb 9.
5
The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer.
Semin Cancer Biol. 2023 Oct;95:1-12. doi: 10.1016/j.semcancer.2023.06.007. Epub 2023 Jun 25.
6
The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma.
Front Oncol. 2021 Jul 22;11:696705. doi: 10.3389/fonc.2021.696705. eCollection 2021.
7
N-methyladenosine (mA) modification in hepatocellular carcinoma.
Biomed Pharmacother. 2024 Apr;173:116365. doi: 10.1016/j.biopha.2024.116365. Epub 2024 Mar 6.
8
The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma.
Front Oncol. 2022 Feb 24;12:790916. doi: 10.3389/fonc.2022.790916. eCollection 2022.
9
Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches.
Pharmaceutics. 2023 Apr 15;15(4):1249. doi: 10.3390/pharmaceutics15041249.
10

引用本文的文献

2
Lnc-SNHG5 Promoted Hepatocellular Carcinoma Progression Through the RPS3-NFκB Pathway.
Int J Gen Med. 2023 Dec 1;16:5651-5664. doi: 10.2147/IJGM.S442937. eCollection 2023.
3
DNAAF5 promotes hepatocellular carcinoma malignant progression by recruiting USP39 to improve PFKL protein stability.
Front Oncol. 2022 Oct 6;12:1032579. doi: 10.3389/fonc.2022.1032579. eCollection 2022.
4
Analysis of the expression, function and signaling of glycogen phosphorylase isoforms in hepatocellular carcinoma.
Oncol Lett. 2022 Jun 7;24(2):244. doi: 10.3892/ol.2022.13364. eCollection 2022 Aug.
5
Cancer Stem Cells and the Tumor Microenvironment in Gastric Cancer.
Front Oncol. 2022 Jan 3;11:803974. doi: 10.3389/fonc.2021.803974. eCollection 2021.

本文引用的文献

1
3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells.
Biochem Pharmacol. 2020 Jul;177:113988. doi: 10.1016/j.bcp.2020.113988. Epub 2020 Apr 21.
3
Metabolic reprogramming and cancer progression.
Science. 2020 Apr 10;368(6487). doi: 10.1126/science.aaw5473.
4
Synergistic activity of IDH1 inhibitor BAY1436032 with azacitidine in IDH1 mutant acute myeloid leukemia.
Haematologica. 2021 Feb 1;106(2):565-573. doi: 10.3324/haematol.2019.236992.
5
Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression.
Mol Cancer. 2020 Mar 25;19(1):65. doi: 10.1186/s12943-020-01152-2.
7
Regulation of hepatic glutamine metabolism by miR-122.
Mol Metab. 2020 Apr;34:174-186. doi: 10.1016/j.molmet.2020.01.003. Epub 2020 Jan 9.
8
10
Structure-Based Design and Identification of FT-2102 (Olutasidenib), a Potent Mutant-Selective IDH1 Inhibitor.
J Med Chem. 2020 Feb 27;63(4):1612-1623. doi: 10.1021/acs.jmedchem.9b01423. Epub 2020 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验