IEEE Trans Vis Comput Graph. 2022 Aug;28(8):3050-3068. doi: 10.1109/TVCG.2021.3050071. Epub 2022 Jun 30.
Event sequence data is increasingly available in various application domains, such as business process management, software engineering, or medical pathways. Processes in these domains are typically represented as process diagrams or flow charts. So far, various techniques have been developed for automatically generating such diagrams from event sequence data. An open challenge is the visual analysis of drift phenomena when processes change over time. In this article, we address this research gap. Our contribution is a system for fine-granular process drift detection and corresponding visualizations for event logs of executed business processes. We evaluated our system both on synthetic and real-world data. On synthetic logs, we achieved an average F-score of 0.96 and outperformed all the state-of-the-art methods. On real-world logs, we identified all types of process drifts in a comprehensive manner. Finally, we conducted a user study highlighting that our visualizations are easy to use and useful as perceived by process mining experts. In this way, our work contributes to research on process mining, event sequence analysis, and visualization of temporal data.
事件序列数据在各种应用领域(如业务流程管理、软件工程或医疗路径)中越来越多地可用。这些领域的流程通常表示为流程图或流程图。到目前为止,已经开发了各种技术来从事件序列数据自动生成此类图表。一个悬而未决的问题是当流程随时间变化时,对漂移现象进行可视化分析。在本文中,我们解决了这一研究空白。我们的贡献是一种用于执行业务流程的事件日志的细粒度流程漂移检测和相应可视化的系统。我们在合成数据和真实世界数据上评估了我们的系统。在合成日志上,我们实现了平均 F 分数为 0.96 的成绩,优于所有最先进的方法。在真实世界的日志上,我们全面地识别了所有类型的流程漂移。最后,我们进行了一项用户研究,强调我们的可视化易于使用,并且被流程挖掘专家认为是有用的。通过这种方式,我们的工作为流程挖掘、事件序列分析和时间数据可视化的研究做出了贡献。