BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium.
Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium.
Int J Pharm. 2021 Feb 15;595:120069. doi: 10.1016/j.ijpharm.2020.120069. Epub 2021 Jan 6.
In pharmaceutical wet granulation, drying is a critical step in terms of energy and material consumption, whereas granule moisture content and size are important process outcomes that determine tabletting performance. The drying process is, however, very complex due to the multitude of interacting mechanisms on different scales. Building robust physical models of this process therefore requires detailed data. Current data collection methods only succeed in measuring the average moisture content of a size fraction of granules, whereas this property rather follows a distribution that, moreover, contains information on the drying patterns. Therefore, a measurement method is devised to simultaneously characterise the moisture content and size of individual pharmaceutical granules. A setup with near-infrared chemical imaging (NIR-CI) is used to capture an image of a number of granules, in which the absorbance spectra are used for deriving the moisture content of the material and the size of the granules is estimated based on the amount of pixels containing pharmaceutical material. The quantification of moisture content based on absorption spectra is performed with two different regression methods, Partial Least Squares regression (PLSR) and Elastic Net Regression (ENR). The method is validated with particle size data for size determination, loss-on-drying (LOD) data of average moisture contents of granule samples and, finally, batch fluid bed experiments in which the results are compared to the most detailed method to date. The individual granule moisture contents confirmed again that granule size is an important factor in the drying process. The measurement method can be used to gain more detailed experimental insight in different fluidisation and particulate processes, which will allow building of robust process models.
在制药湿法制粒中,干燥在能源和材料消耗方面是一个关键步骤,而颗粒的水分含量和粒度是决定压片性能的重要工艺结果。然而,由于在不同尺度上存在多种相互作用的机制,干燥过程非常复杂。因此,建立稳健的物理模型需要详细的数据。目前的数据收集方法只能成功测量颗粒大小分级的平均水分含量,而这个特性实际上遵循一个分布,该分布还包含有关干燥模式的信息。因此,设计了一种测量方法来同时表征单个制药颗粒的水分含量和粒度。使用近红外化学成像(NIR-CI)的设置来拍摄许多颗粒的图像,其中吸收光谱用于推导材料的水分含量,并且基于包含药物材料的像素数量来估计颗粒的大小。基于吸收光谱的水分含量定量是使用两种不同的回归方法来执行的,即偏最小二乘回归(PLSR)和弹性网络回归(ENR)。该方法通过粒径数据进行了验证,以确定粒径,通过干燥失重(LOD)数据确定颗粒样品的平均水分含量,最后通过批次流化床实验进行了验证,将结果与迄今为止最详细的方法进行了比较。单个颗粒的水分含量再次证实,颗粒大小是干燥过程中的一个重要因素。该测量方法可用于在不同的流化和颗粒过程中获得更详细的实验见解,从而允许建立稳健的过程模型。