Suppr超能文献

利用负二项回归模型和广义泊松回归模型的各种函数形式估计城市交叉口的安全性能函数。

Estimation of safety performance functions for urban intersections using various functional forms of the negative binomial regression model and a generalized Poisson regression model.

机构信息

UGent, Department of Civil Engineering, Technologiepark 60, 9052 Zwijnaarde, Belgium; UHasselt, Transportation Research Institute (IMOB), Agoralaan, 3590 Diepenbeek, Belgium.

UHasselt, Transportation Research Institute (IMOB), Agoralaan, 3590 Diepenbeek, Belgium; UHasselt, Faculty of Engineering Technology, Agoralaan, 3590 Diepenbeek, Belgium.

出版信息

Accid Anal Prev. 2021 Mar;151:105964. doi: 10.1016/j.aap.2020.105964. Epub 2021 Jan 6.

Abstract

Intersections are established dangerous entities of a highway system due to the challenging and unsafe roadway environment they are characterized for drivers and other road users. In efforts to improve safety, an enormous interest has been shown in developing statistical models for intersection crash prediction and explanation. The selection of an adequate form of the statistical model is of great importance for the accurate estimation of crash frequency and the correct identification of crash contributing factors. Using a six-year crash data, road infrastructure and geometric design data, and traffic flow data of urban intersections, we applied three different functional forms of negative binomial models (i.e., NB-1, NB-2, NB-P) and a generalized Poisson (GP) model to develop safety performance functions (SPF) by crash severity for signalized and unsignalized intersections. This paper presents the relationships found between the explanatory variables and the expected crash frequency. It reports the comparison of different models for total, injury & fatal, and property damage only crashes in order to obtain ones with the maximum estimation accuracy. The comparison of models was based on the goodness of fit and the prediction performance measures. The fitted models showed that the traffic flow and several variables related to road infrastructure and geometric design significantly influence the intersection crash frequency. Further, the goodness of fit and the prediction performance measures revealed that the NB-P model outperformed other models in most crash severity levels for signalized intersections. For the unsignalized intersections, the GP model was the best performing model. When only the NB models were compared, the functional form NB-P performed better than the traditional NB-1 and, more specifically, the NB-2 models. In conclusion, our findings suggest a potential improvement in the estimation accuracy of the SPFs for urban intersections by applying the NB-P and GP models.

摘要

交叉口是高速公路系统中的危险实体,因为它们为驾驶员和其他道路使用者带来了具有挑战性和不安全的道路环境。为了提高安全性,人们对开发交叉口碰撞预测和解释的统计模型产生了极大的兴趣。选择适当的统计模型形式对于准确估计碰撞频率和正确识别碰撞因素至关重要。使用六年的碰撞数据、道路基础设施和几何设计数据以及城市交叉口的交通流量数据,我们应用了三种不同形式的负二项式模型(即 NB-1、NB-2、NB-P)和广义泊松(GP)模型,通过碰撞严重程度为信号交叉口和无信号交叉口开发安全性能函数(SPF)。本文介绍了在解释变量和预期碰撞频率之间发现的关系。报告了对总碰撞、伤害和致命碰撞以及仅财产损失碰撞的不同模型的比较,以获得具有最大估计准确性的模型。模型的比较基于拟合优度和预测性能指标。拟合模型表明,交通流量以及与道路基础设施和几何设计相关的几个变量显著影响交叉口碰撞频率。此外,拟合优度和预测性能指标表明,在信号交叉口的大多数碰撞严重程度水平下,NB-P 模型优于其他模型。对于无信号交叉口,GP 模型是表现最好的模型。当仅比较 NB 模型时,功能形式 NB-P 比传统的 NB-1 表现更好,更具体地说,比 NB-2 模型表现更好。总之,我们的研究结果表明,应用 NB-P 和 GP 模型可以提高城市交叉口 SPF 的估计准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验