Suppr超能文献

R1617Q 癫痫突变会减缓钠 1.6 钠离子通道失活,增加持续电流和神经元放电。

R1617Q epilepsy mutation slows Na 1.6 sodium channel inactivation and increases the persistent current and neuronal firing.

机构信息

CERVO Brain Research Centre, Quebec City, Québec, Canada.

Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.

出版信息

J Physiol. 2021 Mar;599(5):1651-1664. doi: 10.1113/JP280838. Epub 2021 Jan 26.

Abstract

KEY POINTS

A human Na 1.6 construct was established to study the biophysical consequences of the R1617Q mutation on Na 1.6 identified in patients with unclassified epileptic encephalopathy and severe intellectual disability. The R1617Q mutation disrupts the inactivation process of the channel, and more specifically, slows the current decay, increases the persistent sodium current that was blocked by tetrodotoxin and riluzole, and disrupts the inactivation voltage-dependence and increases the kinetics of recovery. In native hippocampal neurons, the R1617Q mutation exhibited a significant increase in action potentials triggered in response to stimulation and a significant increase in the number of neurons that exhibited spontaneous activity compared to neurons expressing WT channels that were inhibited by riluzole. The abnormally persistent current activity caused by the disruption of the channel inactivation process in Na 1.6/R1617Q may result in epileptic encephalopathy in patients.

ABSTRACT

The voltage-gated sodium channel Na 1.6 is the most abundantly expressed sodium channel isoform in the central nervous system. It plays a critical role in saltatory and continuous conduction. Although over 40 Na 1.6 mutations have been linked to epileptic encephalopathy, only a few have been functionally analysed. In the present study, we characterized a Na 1.6 mutation (R1617Q) identified in patients with epileptic encephalopathy and intellectual disability. R1617Q substitutes an arginine for a glutamine in the S4 segment of domain IV, which plays a major role in coupling the activation and inactivation of sodium channels. We used patch-clamp to show that R1617Q is a gain-of-function mutation. It is typified by slower inactivation kinetics and a loss of inactivation of voltage-dependence, which result in a 2.5-fold increase in the window current. In addition, sodium currents exhibited an enhanced rate of recovery from inactivation, most likely due to the destabilization of the inactivation state. The alterations in the fast inactivation caused a significant increase in the persistent sodium current. Overexpression of R1617Q in rat hippocampal neurons resulted in an increase in action potential firing activity that was inhibited by riluzole, consistent with the gain-of-function observed. We conclude that the R1617Q mutation causes neuronal hyperexcitability and may result in epileptic encephalopathy.

摘要

要点

为研究在未分类的癫痫性脑病和严重智力残疾患者中发现的 Na 1.6 上 R1617Q 突变对 Na 1.6 的生物物理后果,建立了人源 Na 1.6 构建体。该突变破坏了通道的失活过程,更具体地说,减慢了电流衰减,增加了被河豚毒素和利鲁唑阻断的持续钠电流,并破坏了失活电压依赖性并增加了恢复动力学。在原代海马神经元中,与表达 WT 通道的神经元相比,R1617Q 突变显著增加了对刺激的动作电位触发次数,并显著增加了表现出自发活动的神经元数量,而表达 WT 通道的神经元被利鲁唑抑制。Na 1.6/R1617Q 中通道失活过程的破坏引起的异常持续电流活动可能导致患者发生癫痫性脑病。

摘要

电压门控钠离子通道 Na 1.6 是中枢神经系统中表达最丰富的钠离子通道同工型。它在跳跃和连续传导中起着关键作用。尽管已有 40 多种 Na 1.6 突变与癫痫性脑病相关,但只有少数已进行功能分析。在本研究中,我们对癫痫性脑病和智力残疾患者中发现的 Na 1.6 突变(R1617Q)进行了特征描述。R1617Q 取代了 S4 结构域 IV 中谷氨酸的精氨酸,该结构域在钠通道的激活和失活偶联中起主要作用。我们使用膜片钳技术表明 R1617Q 是一种功能获得性突变。其特点是失活动力学变慢,失活的电压依赖性丧失,导致窗口电流增加 2.5 倍。此外,钠电流的失活恢复率增加,这很可能是由于失活状态的不稳定。快速失活的改变导致持续钠电流显著增加。R1617Q 在大鼠海马神经元中的过表达导致动作电位放电活动增加,这与观察到的功能获得一致,并且被利鲁唑抑制。我们得出结论,R1617Q 突变导致神经元过度兴奋,可能导致癫痫性脑病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验