State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China.
Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
J Mater Chem B. 2021 Feb 15;9(5):1315-1324. doi: 10.1039/d0tb02182b.
Three-dimensional (3D) printing technology with satisfactory speed and accuracy has been a powerful force in biomaterial processing. Early studies on 3D printing of biomaterials mainly focused on their biocompatibility and cellular viability while rarely attempted to produce robust specimens. Nonetheless, the biomedical applications of polymers can be severely limited by their inherently weak mechanical properties particularly in bone tissue engineering. In this study, continuous liquid interface production (CLIP) is applied to construct 3D objects of nano-hydroxyapatite (n-HA) filled polymeric biomaterials with complex architectures. Notably, the bioactive and osteoconductive n-HA endows the 3D prints of poly(ethyleneglycol)diacrylate (PEGDA) composites with a high compression strength of 6.5 ± 1.4 MPa, about 342% improvement over neat PEGDA. This work demonstrates the first successful attempt on CLIP 3D printing of n-HA nanocomposites, providing a feasible, cost-effective and patient-specific solution to various fields in the biomedical industry.
三维(3D)打印技术具有令人满意的速度和精度,已成为生物材料处理领域的强大力量。早期的生物材料 3D 打印研究主要集中在其生物相容性和细胞活力上,很少尝试生产出坚固的标本。然而,聚合物的生物医学应用可能会受到其固有机械性能的严重限制,特别是在骨组织工程中。在这项研究中,连续液相生产(CLIP)被应用于构建具有复杂结构的纳米羟基磷灰石(n-HA)填充聚合物生物材料的 3D 物体。值得注意的是,生物活性和骨传导性的 n-HA 使聚(乙二醇)二丙烯酸酯(PEGDA)复合材料的 3D 打印件具有 6.5±1.4 MPa 的高压缩强度,比纯 PEGDA 提高了约 342%。这项工作展示了首次成功尝试使用 CLIP 3D 打印 n-HA 纳米复合材料,为生物医学工业的各个领域提供了一种可行、经济高效且针对患者的解决方案。