Suppr超能文献

单事件粒子放射照相术空间分辨率极限的理论考虑

Theoretical considerations on the spatial resolution limit of single-event particle radiography.

机构信息

Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsfoschungszentrum (DKFZ), Heidelberg, Germany. Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.

出版信息

Biomed Phys Eng Express. 2020 Jul 7;6(5):055002. doi: 10.1088/2057-1976/ab9c3f.

Abstract

Particle radiography (pRad) has been proposed and investigated as a promising tool for particle therapy as it provides a water equivalent thickness (WET) image of the patient. In single-event particle imaging, for each measured particle, the related most likely path (MLP) through the object is estimated to account for multiple Coulomb scattering (MCS). In previous studies, the accuracy limit of the MLP has been used to determine the spatial resolution limit. In this work, we investigate the limit of the spatial resolution achievable with different pRad algorithms based on a theoretical model of the particle scattering for an ideal beam and detector. First, we investigate binning the particles in a plane seated at the depth of the object of interest (plane-of-interest binning; PIB) and extend existing theoretical considerations also to objects not located in the binning plane. We use this to model the spatial resolution in case of binning the particles directly at the front or rear tracker (FTB and RTB, respectively). Further, we investigate evenly distributing the particles' WET along their trajectory into pixel channels and creating the pRad image as channel mean (along-path-binning; APB). Monte Carlo simulations are used to qualitatively investigate the different algorithms and to validate the theoretical predictions. We show that projecting the scattered particle paths onto a single image will inevitably result in a limited spatial resolution lower than expected from only the MLP uncertainty. Only in the case where the depth of a feature is known and used as binning depth for PIB, the spatial resolution of that feature is equal to the path estimation accuracy. For the APB algorithm the spatial resolution decreases with increasing depth in the object, especially if the true particle path through the object would be known. The derived theoretical models will be useful for future development of improved pRad reconstruction algorithms.

摘要

粒子射线照相术(pRad)已被提出并研究作为粒子治疗的一种有前途的工具,因为它提供了患者的水等效厚度(WET)图像。在单事件粒子成象中,对于每个测量的粒子,通过对象的相关最可能路径(MLP)被估计以考虑多次库仑散射(MCS)。在以前的研究中,MLP 的精度限制被用于确定空间分辨率的限制。在这项工作中,我们根据理想光束和探测器的粒子散射的理论模型,研究了不同的 pRad 算法可实现的空间分辨率的限制。首先,我们研究了在感兴趣的物体深度处的平面中对粒子进行分箱(感兴趣平面分箱;PIB),并将现有的理论考虑也扩展到未位于分箱平面中的物体。我们使用此模型来模拟在直接在前置或后置追踪器(FTB 和 RTB)上分箱粒子的情况下的空间分辨率。此外,我们研究了沿其轨迹将粒子的 WET 均匀分布到像素通道中,并将 pRad 图像创建为通道平均值(沿路径分箱;APB)。蒙特卡罗模拟用于定性研究不同的算法并验证理论预测。我们表明,将散射粒子路径投影到单个图像上不可避免地会导致比仅从 MLP 不确定性预期的空间分辨率有限。只有在特征的深度已知并用作 PIB 的分箱深度的情况下,该特征的空间分辨率才等于路径估计精度。对于 APB 算法,随着物体深度的增加,空间分辨率会降低,特别是如果知道穿过物体的真实粒子路径。所得到的理论模型将有助于未来开发改进的 pRad 重建算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验