Suppr超能文献

用于产生超窄电磁诱导透明带的独立双层等离子体波导耦合机制

Freestanding bilayer plasmonic waveguide coupling mechanism for ultranarrow electromagnetic-induced transparency band generation.

作者信息

Yu Li, Liang Yuzhang, Chu Shuwen, Gao Huixuan, Wang Qiao, Peng Wei

机构信息

School of Physics, Dalian University of Technology, Dalian, 116024, China.

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China.

出版信息

Sci Rep. 2021 Jan 14;11(1):1437. doi: 10.1038/s41598-021-81118-6.

Abstract

Strong electromagnetic coupling among plasmonic nanostructures paves a new route toward efficient manipulation of photons. Particularly, plasmon-waveguide systems exhibit remarkable optical properties by simply tailoring the interaction among elementary elements. In this paper, we propose and demonstrate a freestanding bilayer plasmonic-waveguide structure exhibiting an extremely narrow transmission peak with efficiency up to 92%, the linewidth of only 0.14 nm and an excellent out of band rejection. The unexpected optical behavior considering metal loss is consistent with that of electromagnetic induced transparency, arising from the destructive interference of super-radiative nanowire dipolar mode and transversal magnetic waveguide mode. Furthermore, for slow light application, the designed plasmonic-waveguide structure has a high group index of approximately 1.2 × 10 at the maximum of the transmission band. In sensing application, its lowest sensing figure of merit is achieved up to 8500 due to the ultra-narrow linewidth of the transmission band. This work provides a valuable photonics design for developing high performance nano-photonic devices.

摘要

等离子体纳米结构之间的强电磁耦合为高效操纵光子开辟了一条新途径。特别是,等离子体波导系统通过简单地调整基本元件之间的相互作用,展现出卓越的光学特性。在本文中,我们提出并展示了一种独立的双层等离子体波导结构,它具有极窄的传输峰,效率高达92%,线宽仅为0.14纳米,并且具有出色的带外抑制。考虑到金属损耗时出现的意外光学行为与电磁诱导透明的行为一致,这是由超辐射纳米线偶极模式和横向磁波导模式的相消干涉引起的。此外,对于慢光应用,所设计的等离子体波导结构在传输带最大值处具有约1.2×10的高群折射率。在传感应用中,由于传输带的超窄线宽,其最低传感品质因数达到8500。这项工作为开发高性能纳米光子器件提供了有价值的光子学设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892f/7809490/91201b999105/41598_2021_81118_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验