Suppr超能文献

个体猎物-捕食者大小比的变异来源。

The sources of variation for individual prey-to-predator size ratios.

机构信息

cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.

Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain.

出版信息

Heredity (Edinb). 2021 Apr;126(4):684-694. doi: 10.1038/s41437-020-00395-5. Epub 2021 Jan 15.

Abstract

The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSR) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h = 0.069) and dominance and common environmental variance (d + 4c = 0.056). PPSR was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSR indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSR, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.

摘要

捕食者愿意攻击猎物的相对体型,这是捕食者-猎物相互作用的一个关键特征,通常被认为是不变的。然而,这个比例在个体或群体之间可能有很大的差异。确定这种变异的范围和起源对于理解捕食者和猎物选择的强度和限制是至关重要的。尽管如此,这些变异的来源在很大程度上仍然未知。我们通过使用父本半同胞分群设计,测量了狼蛛 Lycosa fasciiventris 幼体中最大猎物-捕食者体型比(PPSR)的遗传、母体和环境变异,从而填补了这一空白。在这种设计中,每个雄性与两个雌性配对,后代在两种食物环境中饲养:贫瘠和丰富。然后,每个幼蛛依次被提供体型逐渐减小的蟋蟀,确定最大的猎物被杀死的体型。我们还在幼蛛出现时和试验前测量了蜘蛛的体型和身体状况。我们发现了低但显著的遗传力(h=0.069)和显性和共同环境方差(d+4c=0.056)。PPSR 还部分受到身体状况(在试验期间)的影响,但饲养食物环境没有影响。最后,生命早期体型与 PPSR 之间存在母体相关性,表明出生时体型较大的后代以后不太可能捕食体型较大的猎物。因此,作为生态系统中一个核心特征的 PPSR 可能有很大的差异,这种差异是由不同的来源引起的,这对该特征在短期和长期内的变化有重要影响。

相似文献

1
The sources of variation for individual prey-to-predator size ratios.
Heredity (Edinb). 2021 Apr;126(4):684-694. doi: 10.1038/s41437-020-00395-5. Epub 2021 Jan 15.
3
Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.
J Anim Ecol. 2014 Jan;83(1):214-22. doi: 10.1111/1365-2656.12111. Epub 2013 Aug 5.
4
Prey to predator body size ratio in the evolution of cooperative hunting-a social spider test case.
Dev Genes Evol. 2020 Mar;230(2):173-184. doi: 10.1007/s00427-019-00640-w. Epub 2019 Nov 25.
5
Predator population size structure alters consumption of prey from epigeic and grazing food webs.
Oecologia. 2020 Mar;192(3):791-799. doi: 10.1007/s00442-020-04619-7. Epub 2020 Feb 22.
6
Impacts of female body size on cannibalism and juvenile abundance in a dominant arctic spider.
J Anim Ecol. 2020 Aug;89(8):1788-1798. doi: 10.1111/1365-2656.13230. Epub 2020 May 4.
8
Multi-elemental consumer-driven nutrient cycling when predators feed on different prey.
Oecologia. 2023 Aug;202(4):729-742. doi: 10.1007/s00442-023-05431-9. Epub 2023 Aug 8.
9
Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs.
J Evol Biol. 2015 Jun;28(6):1225-33. doi: 10.1111/jeb.12647. Epub 2015 May 12.
10
Predator-induced flow disturbances alert prey, from the onset of an attack.
Proc Biol Sci. 2014 Sep 7;281(1790). doi: 10.1098/rspb.2014.1083.

引用本文的文献

1
Limited host availability disrupts the genetic correlation between virulence and transmission.
Evol Lett. 2023 Jan 31;7(1):58-66. doi: 10.1093/evlett/qrac008. eCollection 2023 Feb 1.

本文引用的文献

1
Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths.
Ecol Evol. 2020 Jun 1;10(12):5946-5962. doi: 10.1002/ece3.6332. eCollection 2020 Jun.
2
Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations?
Evolution. 2020 Jul;74(7):1540-1550. doi: 10.1111/evo.14034. Epub 2020 Jun 18.
3
Prey to predator body size ratio in the evolution of cooperative hunting-a social spider test case.
Dev Genes Evol. 2020 Mar;230(2):173-184. doi: 10.1007/s00427-019-00640-w. Epub 2019 Nov 25.
4
Phenotypic variability promotes diversity and stability in competitive communities.
Ecol Lett. 2019 Nov;22(11):1776-1786. doi: 10.1111/ele.13356. Epub 2019 Aug 1.
5
A mother's legacy: the strength of maternal effects in animal populations.
Ecol Lett. 2019 Oct;22(10):1620-1628. doi: 10.1111/ele.13351. Epub 2019 Jul 29.
6
MATERNAL EFFECTS ON OFFSPRING SIZE: VARIATION THROUGH EARLY DEVELOPMENT OF CHINOOK SALMON.
Evolution. 1999 Oct;53(5):1605-1611. doi: 10.1111/j.1558-5646.1999.tb05424.x.
7
A comparison of prey lengths among spiders.
Oecologia. 1986 Mar;68(4):595-600. doi: 10.1007/BF00378777.
9
Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest.
Zoology (Jena). 2016 Jun;119(3):162-168. doi: 10.1016/j.zool.2016.04.002. Epub 2016 Apr 27.
10
Evolutionary genetics of maternal effects.
Evolution. 2016 Apr;70(4):827-39. doi: 10.1111/evo.12905. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验