Suppr超能文献

一种新方法从光合膜中产生天然捕光复合物II聚集体,揭示了它们在非光化学猝灭中的作用。

A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.

作者信息

Shukla Mahendra K, Watanabe Akimasa, Wilson Sam, Giovagnetti Vasco, Moustafa Ece Imam, Minagawa Jun, Ruban Alexander V

机构信息

School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.

Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17816-17826. doi: 10.1074/jbc.RA120.016181.

Abstract

Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment-protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.

摘要

非光化学猝灭(NPQ)是一种调节光能捕获的机制,通过将过量吸收的激发能以热的形式耗散,保护光合机构免受光损伤。在高等植物中,光系统(PS)II的主要捕光天线复合体(LHCII)直接参与NPQ。有人提出LHCII的聚集与猝灭有关。然而,未能成功分离天然的LHCII聚集体限制了对这一过程的直接研究。由于使用洗涤剂往往会使松散结合的蛋白质解离,以及光合膜中大量嵌入的色素-蛋白质复合体(如PSI和PSII)阻碍了聚集的LHCII的制备,从类囊体膜中分离天然状态的LHCII一直存在问题。在这里,我们使用了一种新颖的纯化方法,采用洗涤剂和两性离子表面活性剂使LHCII保持其天然状态。为了用主要的LHCII富集光合膜,我们使用了缺乏PSII小天线复合体(NoM)的拟南芥植物,并用林可霉素处理以抑制PSI和PSII核心蛋白的合成。通过蔗糖密度梯度离心,我们成功分离出了三聚体和聚集形式的LHCII天线。对富含紫黄质和玉米黄质的复合体在暗适应、NPQ和暗恢复状态下进行了研究。富含玉米黄质的天线复合体显示出最大量的聚集LHCII。值得注意的是,NPQ解除后,聚集的LHCII数量减少。采用这种新颖的制备方法,我们获得了体内LHCII聚集在NPQ中作用的直接证据。

相似文献

2
The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):666-675. doi: 10.1016/j.bbabio.2018.03.005. Epub 2018 Mar 13.
5
On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes.
Photosynth Res. 2020 May;144(2):195-208. doi: 10.1007/s11120-020-00740-z. Epub 2020 Apr 7.
7
Single-molecule microscopy studies of LHCII enriched in Vio or Zea.
Biochim Biophys Acta Bioenerg. 2019 Jun 1;1860(6):499-507. doi: 10.1016/j.bbabio.2019.05.002. Epub 2019 May 2.
9
Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):607-19. doi: 10.1016/j.bbabio.2015.03.004. Epub 2015 Apr 3.
10
Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment.
Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148115. doi: 10.1016/j.bbabio.2019.148115. Epub 2020 Mar 20.

引用本文的文献

1
Architecture and functional regulation of a plant PSII-LHCII megacomplex.
Sci Adv. 2024 Dec 13;10(50):eadq9967. doi: 10.1126/sciadv.adq9967.
2
Energetic driving force for LHCII clustering in plant membranes.
Sci Adv. 2023 Dec 22;9(51):eadj0807. doi: 10.1126/sciadv.adj0807.
4
Expression of the Arabidopsis Mg-chelatase H subunit alleviates iron deficiency-induced stress in transgenic rice.
Front Plant Sci. 2023 Mar 2;14:1098808. doi: 10.3389/fpls.2023.1098808. eCollection 2023.
6
A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein.
Photosynth Res. 2023 Apr;156(1):163-177. doi: 10.1007/s11120-022-00935-6. Epub 2022 Jul 10.
7
The Structural and Spectral Features of Light-Harvesting Complex II Proteoliposomes Mimic Those of Native Thylakoid Membranes.
J Phys Chem Lett. 2022 Jun 23;13(24):5683-5691. doi: 10.1021/acs.jpclett.2c01019. Epub 2022 Jun 16.
8
Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii.
Physiol Plant. 2022 Jan;174(1):e13604. doi: 10.1111/ppl.13604. Epub 2021 Dec 6.
10
Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from .
Elife. 2021 Jan 15;10:e60383. doi: 10.7554/eLife.60383.

本文引用的文献

1
Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions.
J Biol Chem. 2020 Oct 23;295(43):14537-14545. doi: 10.1074/jbc.RA120.014198. Epub 2020 Jun 19.
4
Structural insight into light harvesting for photosystem II in green algae.
Nat Plants. 2019 Dec;5(12):1320-1330. doi: 10.1038/s41477-019-0543-4. Epub 2019 Nov 25.
5
Aggregation-Related Nonphotochemical Quenching in the Photosynthetic Membrane.
J Phys Chem Lett. 2019 Dec 5;10(23):7340-7346. doi: 10.1021/acs.jpclett.9b03100. Epub 2019 Nov 14.
6
Structural determination of the large photosystem II-light-harvesting complex II supercomplex of using nonionic amphipol.
J Biol Chem. 2019 Oct 11;294(41):15003-15013. doi: 10.1074/jbc.RA119.009341. Epub 2019 Aug 15.
7
Amphipol-assisted purification method for the highly active and stable photosystem II supercomplex of Chlamydomonas reinhardtii.
FEBS Lett. 2019 May;593(10):1072-1079. doi: 10.1002/1873-3468.13394. Epub 2019 May 11.
8
Light harvesting control in plants.
FEBS Lett. 2018 Sep;592(18):3030-3039. doi: 10.1002/1873-3468.13111. Epub 2018 Jun 4.
9
The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):666-675. doi: 10.1016/j.bbabio.2018.03.005. Epub 2018 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验