Suppr超能文献

无监督层次聚类鉴定出高血压个体中代谢不良的亚组。

Unsupervised hierarchical clustering identifies a metabolically challenged subgroup of hypertensive individuals.

机构信息

Department of Medicine, University of Turku, Turku, Finland.

Finnish Institute for Health and Welfare (THL), Helsinki, Finland.

出版信息

J Clin Hypertens (Greenwich). 2020 Sep;22(9):1546-1553. doi: 10.1111/jch.13984. Epub 2020 Aug 16.

Abstract

The current classification of hypertension does not reflect the heterogeneity in characteristics or cardiovascular outcomes of hypertensive individuals. Our objective was to identify distinct phenotypes of hypertensive individuals with potentially different cardiovascular risk profiles using data-driven cluster analysis. We performed clustering, a procedure that identifies groups with similar characteristics, in 3726 individuals (mean age 59.4 years, 49% women) with grade 2 hypertension (blood pressure ≥160/100 mmHg or antihypertensive medication) selected from FINRISK 1997, 2002, and 2007 cohorts. We computed clusters based on eight factors associated with hypertension: mean arterial pressure, pulse pressure, non-high-density lipoprotein cholesterol, blood glucose, BMI, C-reactive protein, estimated glomerular filtration rate, and alcohol. After that, we used Cox regression models adjusted for age and sex to assess the relative risk of cardiovascular disease (CVD) outcomes between the clusters and a reference group of 11 020 individuals. We observed two comparable clusters in both men and women. The Metabolically Challenged (MC) cluster was characterized by high blood glucose (Z-score 4.4 ± 1.1 vs 0.2 ± 0.8, men; 3.5 ± 1.1 vs 0.0 ± 0.6, women) and elevated BMI (30.4 ± 4.1 vs 28.9 ± 4.3, men; 32.7 ± 4.9 vs 29.3 ± 5.5, women). Over a 10-year follow-up (1034 CVD events), MC had 1.6-fold (95% CI 1.1-2.4) CVD risk compared to non-MC and 2.5-fold (95% CI 1.7-3.7) CVD risk compared to the reference group (P ≤ .009 for both). Using unsupervised hierarchical clustering, we found two phenotypically distinct hypertension subgroups with different risks of CVD complications. This substratification could be used to design studies that explore the differential effects of antihypertensive therapies among subgroups of hypertensive individuals.

摘要

当前的高血压分类方法不能反映高血压患者特征或心血管结局的异质性。我们的目的是使用数据驱动的聚类分析,确定具有潜在不同心血管风险特征的高血压患者的不同表型。我们对来自 FINRISK 1997、2002 和 2007 队列的 3726 名(平均年龄 59.4 岁,女性占 49%)二级高血压(血压≥160/100mmHg 或服用降压药)患者进行了聚类分析,这些患者的聚类是基于与高血压相关的 8 个因素(平均动脉压、脉压、非高密度脂蛋白胆固醇、血糖、BMI、C 反应蛋白、估算肾小球滤过率和酒精)进行的。然后,我们使用 Cox 回归模型调整年龄和性别因素,评估每个聚类与 11020 名参考个体之间心血管疾病(CVD)结局的相对风险。我们在男性和女性中都观察到了两个相似的聚类。代谢挑战(MC)聚类的特征是高血糖(男性 Z 评分 4.4±1.1 与 0.2±0.8,女性 3.5±1.1 与 0.0±0.6)和 BMI 升高(男性 30.4±4.1 与 28.9±4.3,女性 32.7±4.9 与 29.3±5.5)。在 10 年的随访期间(1034 例 CVD 事件),与非 MC 相比,MC 的 CVD 风险增加 1.6 倍(95%CI 1.1-2.4),与参考组相比,MC 的 CVD 风险增加 2.5 倍(95%CI 1.7-3.7)(两者均 P≤0.009)。通过无监督层次聚类,我们发现了具有不同 CVD 并发症风险的两种表型上明显不同的高血压亚组。这种亚分类可用于设计研究,探索降压治疗在高血压患者亚组中的差异作用。

相似文献

1
Unsupervised hierarchical clustering identifies a metabolically challenged subgroup of hypertensive individuals.
J Clin Hypertens (Greenwich). 2020 Sep;22(9):1546-1553. doi: 10.1111/jch.13984. Epub 2020 Aug 16.
3
Phenomapping of subgroups in hypertensive patients using unsupervised data-driven cluster analysis: An exploratory study of the SPRINT trial.
Eur J Prev Cardiol. 2019 Nov;26(16):1693-1706. doi: 10.1177/2047487319856733. Epub 2019 Jun 18.
5
Do estimated 24-h pulse pressure components affect outcome? The Ohasama study.
J Hypertens. 2020 Jul;38(7):1286-1292. doi: 10.1097/HJH.0000000000002366.
7
Sex-specific clustering of metabolic risk factors and their association with incident cardiovascular diseases: A population-based prospective study.
Atherosclerosis. 2017 Aug;263:249-256. doi: 10.1016/j.atherosclerosis.2017.06.921. Epub 2017 Jun 28.
9
Sex-specific cardiovascular morbidity and mortality in a cohort treated for hypertension.
J Hypertens. 2006 Aug;24(8):1523-9. doi: 10.1097/01.hjh.0000239287.10013.e0.

引用本文的文献

2
Social and Metabolic Determinants of Prevalent Hypertension in Men and Women: A Cluster Analysis from a Population-Based Study.
Int J Environ Res Public Health. 2023 Jan 18;20(3):1736. doi: 10.3390/ijerph20031736.
4
Multi-Trait Genetic Analysis Reveals Clinically Interpretable Hypertension Subtypes.
Circ Genom Precis Med. 2022 Aug;15(4):e003583. doi: 10.1161/CIRCGEN.121.003583. Epub 2022 May 23.

本文引用的文献

1
Phenomapping of subgroups in hypertensive patients using unsupervised data-driven cluster analysis: An exploratory study of the SPRINT trial.
Eur J Prev Cardiol. 2019 Nov;26(16):1693-1706. doi: 10.1177/2047487319856733. Epub 2019 Jun 18.
2
Clustering algorithms: A comparative approach.
PLoS One. 2019 Jan 15;14(1):e0210236. doi: 10.1371/journal.pone.0210236. eCollection 2019.
3
User's guide to correlation coefficients.
Turk J Emerg Med. 2018 Aug 7;18(3):91-93. doi: 10.1016/j.tjem.2018.08.001. eCollection 2018 Sep.
4
2018 ESC/ESH Guidelines for the management of arterial hypertension.
Eur Heart J. 2018 Sep 1;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339.
5
Cohort Profile: The National FINRISK Study.
Int J Epidemiol. 2018 Jun 1;47(3):696-696i. doi: 10.1093/ije/dyx239.
6
Prevalence, Correlates, and Prognosis of Healthy Vascular Aging in a Western Community-Dwelling Cohort: The Framingham Heart Study.
Hypertension. 2017 Aug;70(2):267-274. doi: 10.1161/HYPERTENSIONAHA.117.09026. Epub 2017 May 30.
8
Cardiovascular consequences of metabolic syndrome.
Transl Res. 2017 May;183:57-70. doi: 10.1016/j.trsl.2017.01.001. Epub 2017 Jan 9.
10
Timeline of History of Hypertension Treatment.
Front Cardiovasc Med. 2016 Feb 23;3:3. doi: 10.3389/fcvm.2016.00003. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验