Abalymov Anatolii, Van der Meeren Louis, Saveleva Mariia, Prikhozhdenko Ekaterina, Dewettinck Koen, Parakhonskiy Bogdan, Skirtach Andre G
Department of Biotechnology, University of Ghent, Ghent 9000, Belgium.
Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia.
ACS Biomater Sci Eng. 2020 Jul 13;6(7):3933-3944. doi: 10.1021/acsbiomaterials.0c00119. Epub 2020 May 1.
Biomaterials engineered with specific cell binding sites, tunable mechanical properties, and complex architectures are essential to control cell adhesion and proliferation. The influence of the local properties, such as the local hardness and stability on the interaction with cells, has not been yet fully understood and exploited. This is particularly relevant for hydrogels, very promising materials with, unfortunately, poor cell adhesion properties, attributed mostly to their softness. Here, we propose a new approach for producing hybrid hydrogels by functionalizing them with particles and performing a thermal treatment. Exploring the interaction of cells with these materials we introduce a new concept, cells-grabbing-onto-particles, a facilitation of the cell adhesion through modulation of local properties. The approach is implemented on alginate hydrogels typically unsuitable for cell growth by turning them into a very effective cell culture growth platform. Specifically, alginate hydrogels are bio-mineralized with calcium carbonate (CaCO) particles, where an additional thermal annealing (T-A) process has been applied. The local Young's modulus of new T-A treated hybrid hydrogels has increased to over 3 MPa on areas of hydrogels containing particles and to around 1 MPa on areas without particles, which is drastically different from 130 to 180 kPa values for unmodified hydrogels. Intriguingly, our results show that enhancement of local mechanical properties alone is a necessary, but insufficient, condition; the particles must be stably fixed in gels for cell growth and proliferation. Extended for hydrogels functionalized with silica particles too, the cells-grab-on-particles concept is shown applicable to different materials and cells for cell biology and tissue engineering.
设计具有特定细胞结合位点、可调机械性能和复杂结构的生物材料对于控制细胞粘附和增殖至关重要。局部特性,如局部硬度和稳定性对与细胞相互作用的影响,尚未得到充分理解和利用。这对于水凝胶尤为重要,水凝胶是非常有前景的材料,但不幸的是,其细胞粘附性能较差,这主要归因于它们的柔软性。在此,我们提出一种通过用颗粒对水凝胶进行功能化并进行热处理来制备杂化水凝胶的新方法。通过探索细胞与这些材料的相互作用,我们引入了一个新概念——细胞吸附颗粒,即通过调节局部特性促进细胞粘附。该方法应用于通常不适合细胞生长的藻酸盐水凝胶,将其转变为非常有效的细胞培养生长平台。具体而言,藻酸盐水凝胶用碳酸钙(CaCO)颗粒进行生物矿化,并应用了额外的热退火(T-A)过程。新的经T-A处理的杂化水凝胶在含有颗粒的水凝胶区域局部杨氏模量增加到超过3 MPa,在没有颗粒的区域增加到约1 MPa,这与未改性水凝胶的130至180 kPa值有很大不同。有趣的是,我们的结果表明,仅增强局部机械性能是必要但不充分的条件;颗粒必须稳定地固定在凝胶中才能实现细胞生长和增殖。该细胞吸附颗粒概念扩展到用二氧化硅颗粒功能化的水凝胶,表明其适用于细胞生物学和组织工程中的不同材料和细胞。