Gußmann Florian, Dietrich S, Roth Roland
Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany.
Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart, Germany.
Phys Rev E. 2020 Dec;102(6-1):062112. doi: 10.1103/PhysRevE.102.062112.
The so-called Jagla fluid is well known to exhibit, in addition to the usual gas-liquid critical point, also a liquid-liquid critical point, as well as a density anomaly. This makes it an interesting toy model for water, for which a liquid-liquid critical point is considered to exist but so far eludes experimental verification due to crystallization occurring in the corresponding metastable, deeply supercooled state. With the Jagla fluid being understood quite well in bulk-mostly via simulation studies-the focus of the present study is to describe the spatially inhomogeneous fluid in terms of classical density-functional theory (DFT) with the aim to be able to control its phase behavior on changing the shape or the nature of the confinement of the fluid. This information might contribute to guide potential experimental tests of the liquid-liquid critical point of actual water. We first determine the bulk phase diagram for the Jagla fluid by using thermodynamical perturbation theory. In doing so we explain why the perturbation theories of Barker and Henderson as well as of Weeks, Chandler, and Anderson fail to describe the Jagla fluid. We then continue to construct a perturbative DFT based on our bulk model, which shows significant improvement over the standard mean-field DFT valid at high temperatures. But ultimately the perturbative DFT breaks down at state points close to the binodal line and at low temperatures. This prevents us from achieving the original aim to study a highly confined, inhomogeneous Jagla fluid close to its liquid-liquid binodal.
所谓的贾格拉流体除了具有通常的气-液临界点外,还具有液-液临界点以及密度异常,这是众所周知的。这使其成为水的一个有趣的玩具模型,人们认为水存在液-液临界点,但由于在相应的亚稳、深度过冷状态下会发生结晶,迄今为止尚未得到实验验证。由于对贾格拉流体的整体情况,大多是通过模拟研究有了相当深入的了解,本研究的重点是用经典密度泛函理论(DFT)来描述空间不均匀流体,目的是能够在改变流体限制的形状或性质时控制其相行为。这些信息可能有助于指导对实际水的液-液临界点进行潜在的实验测试。我们首先利用热力学微扰理论确定贾格拉流体的体相图。在此过程中,我们解释了为什么巴克和亨德森以及威克斯、钱德勒和安德森的微扰理论无法描述贾格拉流体。然后,我们继续基于我们的体相模型构建微扰DFT,它比在高温下有效的标准平均场DFT有显著改进。但最终,微扰DFT在接近双节线的状态点和低温下会失效。这使我们无法实现最初的目标,即研究接近其液-液双节线的高度受限、不均匀的贾格拉流体。