文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于实验膜片钳结果的机器学习方法在识别不同细胞类型中的 mitoBK 通道中的应用。

Application of Machine-Learning Methods to Recognize mitoBK Channels from Different Cell Types Based on the Experimental Patch-Clamp Results.

机构信息

Institute of Physics, University of Silesia in Katowice, 40-007 Katowice, Poland.

Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland.

出版信息

Int J Mol Sci. 2021 Jan 15;22(2):840. doi: 10.3390/ijms22020840.


DOI:10.3390/ijms22020840
PMID:33467711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7831025/
Abstract

(1) Background: In this work, we focus on the activity of large-conductance voltage- and Ca2+-activated potassium channels (BK) from the inner mitochondrial membrane (mitoBK). The characteristic electrophysiological features of the mitoBK channels are relatively high single-channel conductance (ca. 300 pS) and types of activating and deactivating stimuli. Nevertheless, depending on the isoformal composition of mitoBK channels in a given membrane patch and the type of auxiliary regulatory subunits (which can be co-assembled to the mitoBK channel protein) the characteristics of conformational dynamics of the channel protein can be altered. Consequently, the individual features of experimental series describing single-channel activity obtained by patch-clamp method can also vary. (2) Methods: Artificial intelligence approaches (deep learning) were used to classify the patch-clamp outputs of mitoBK activity from different cell types. (3) Results: Application of the K-nearest neighbors algorithm (KNN) and the autoencoder neural network allowed to perform the classification of the electrophysiological signals with a very good accuracy, which indicates that the conformational dynamics of the analyzed mitoBK channels from different cell types significantly differs. (4) Conclusion: We displayed the utility of machine-learning methodology in the research of ion channel gating, even in cases when the behavior of very similar microbiosystems is analyzed. A short excerpt from the patch-clamp recording can serve as a "fingerprint" used to recognize the mitoBK gating dynamics in the patches of membrane from different cell types.

摘要

(1) 背景:在这项工作中,我们专注于线粒体内膜(mitoBK)中大电导电压和 Ca2+激活钾通道(BK)的活性。mitoBK 通道的特征电生理特征是相对较高的单通道电导(约 300 pS)和激活和失活刺激的类型。然而,取决于特定膜片上 mitoBK 通道的同工型组成以及辅助调节亚基的类型(可以与 mitoBK 通道蛋白共同组装),通道蛋白构象动力学的特征可以改变。因此,通过膜片钳方法获得的描述单通道活性的实验系列的个体特征也可能有所不同。(2) 方法:人工智能方法(深度学习)用于对来自不同细胞类型的 mitoBK 活性的膜片钳输出进行分类。(3) 结果:应用 K-最近邻算法(KNN)和自动编码器神经网络允许非常准确地对电生理信号进行分类,这表明来自不同细胞类型的分析 mitoBK 通道的构象动力学显着不同。(4) 结论:我们展示了机器学习方法在离子通道门控研究中的实用性,即使在分析非常相似的微生物系统的情况下也是如此。膜片钳记录的简短摘录可以用作“指纹”,用于识别来自不同细胞类型的膜片上的 mitoBK 门控动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/80a42f075afa/ijms-22-00840-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/0fff67921d2c/ijms-22-00840-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/4120641a8002/ijms-22-00840-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/a4fbdaa2d5ac/ijms-22-00840-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/e3e4f523e255/ijms-22-00840-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/981a7e020eee/ijms-22-00840-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/6420a36029c3/ijms-22-00840-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/bf6add20a507/ijms-22-00840-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/80a42f075afa/ijms-22-00840-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/0fff67921d2c/ijms-22-00840-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/4120641a8002/ijms-22-00840-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/a4fbdaa2d5ac/ijms-22-00840-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/e3e4f523e255/ijms-22-00840-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/981a7e020eee/ijms-22-00840-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/6420a36029c3/ijms-22-00840-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/bf6add20a507/ijms-22-00840-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6453/7831025/80a42f075afa/ijms-22-00840-g008.jpg

相似文献

[1]
Application of Machine-Learning Methods to Recognize mitoBK Channels from Different Cell Types Based on the Experimental Patch-Clamp Results.

Int J Mol Sci. 2021-1-15

[2]
Dynamical diversity of mitochondrial BK channels located in different cell types.

Biosystems. 2021-1

[3]
To what extent naringenin binding and membrane depolarization shape mitoBK channel gating-A machine learning approach.

PLoS Comput Biol. 2022-7

[4]
Differences in Gating Dynamics of BK Channels in Cellular and Mitochondrial Membranes from Human Glioblastoma Cells Unraveled by Short- and Long-Range Correlations Analysis.

Cells. 2020-10-15

[5]
The cross-correlation-based analysis to digest the conformational dynamics of the mitoBK channels in terms of their modulation by flavonoids.

Eur Biophys J. 2023-10

[6]
Combined single-channel and macroscopic recording techniques to analyze gating mechanisms of the large conductance Ca2+ and voltage activated (BK) potassium channel.

Methods Mol Biol. 2013

[7]
Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons.

J Cell Physiol. 2007-8

[8]
Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings.

J Physiol. 1999-8-15

[9]
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity.

Exp Neurol. 2015-3-28

[10]
Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle.

Am J Physiol Heart Circ Physiol. 2015-4-1

引用本文的文献

[1]
Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders.

Front Neurosci. 2025-1-8

[2]
Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording.

Adv Sci (Weinh). 2025-3

[3]
Machine Learning Methods for the Analysis of the Patch-Clamp Signals.

Methods Mol Biol. 2024

[4]
To what extent naringenin binding and membrane depolarization shape mitoBK channel gating-A machine learning approach.

PLoS Comput Biol. 2022-7

本文引用的文献

[1]
Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data.

Commun Biol. 2020-1-7

[2]
Molecular structures of the human Slo1 K channel in complex with β4.

Elife. 2019-12-9

[3]
Predicting Ion Channels Genes and Their Types With Machine Learning Techniques.

Front Genet. 2019-5-3

[4]
Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.

Nat Methods. 2019-3-18

[5]
Cell Identity Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks.

Sci Rep. 2019-2-20

[6]
Regulation of BK Channels by Beta and Gamma Subunits.

Annu Rev Physiol. 2019-2-10

[7]
Artificial Intelligence in Drug Design-The Storm Before the Calm?

ACS Med Chem Lett. 2018-11-2

[8]
Ensembl variation resources.

Database (Oxford). 2018-1-1

[9]
Artificial intelligence in drug development: present status and future prospects.

Drug Discov Today. 2018-11-22

[10]
Artificial Intelligence in Drug Design.

Molecules. 2018-10-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索