Suppr超能文献

用于可见光下光参与锂氧电池的半导体金属有机聚合物纳米片

Semiconducting Metal-Organic Polymer Nanosheets for a Photoinvolved Li-O Battery under Visible Light.

作者信息

Lv Qingliang, Zhu Zhuo, Zhao Shuo, Wang Liubin, Zhao Qing, Li Fujun, Archer Lynden A, Chen Jun

机构信息

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

出版信息

J Am Chem Soc. 2021 Feb 3;143(4):1941-1947. doi: 10.1021/jacs.0c11400. Epub 2021 Jan 19.

Abstract

Li-O batteries are considered the ultimate energy storage technology for their potential to store large amounts of electrical energy in a cost-effective and simple platform. Large overpotentials for the formation and oxidation of LiO during discharging and charging have thus far confined this technology to a scientific curiosity. Herein, we consider the role of catalytic intervention in the reversibility of the cathode reactions and find that semiconducting metal-organic polymer nanosheets composed of cobalt-tetramino-benzoquinone (Co-TABQ) function as a bifunctional catalyst that facilitates the kinetics of the cathode reactions under visible light. Upon discharging, we report that O is first adsorbed on the Co atoms of Co-TABQ and accepts electrons under illumination from the d and d orbitals of Co atoms in the π orbitals, which facilitates reduction to LiO. The LiO is further shown to undergo a second reduction to the discharge product of LiO. In the reverse charge, the holes generated in the d orbitals of Co are mobilized under the action of the applied voltage to enable the fast decomposition of LiO to O and Li. Under illumination, the Li-O battery exhibits respective discharge and charge voltages of 3.12 and 3.32 V for a round-trip efficiency of 94.0%. Our findings imply that the orbital interaction of metal ions with ligands in Co-TABQ nanosheets dictates the light harvesting and oxygen electrocatalysis for the Li-O battery.

摘要

锂氧电池因其在经济高效且简单的平台上存储大量电能的潜力,被视为终极储能技术。然而,迄今为止,在充放电过程中LiO形成和氧化的大过电位限制了这项技术,使其仅停留在科学探索阶段。在此,我们研究了催化干预在阴极反应可逆性中的作用,发现由钴 - 四氨基苯醌(Co - TABQ)组成的半导体金属有机聚合物纳米片作为双功能催化剂,在可见光下促进了阴极反应的动力学。在放电过程中,我们发现O首先吸附在Co - TABQ的Co原子上,并在光照下从Co原子的d轨道和d轨道接受电子,进入π轨道,这有助于还原为LiO。进一步研究表明,LiO会进一步还原为LiO的放电产物。在反向充电过程中,Co的d轨道中产生的空穴在施加电压的作用下移动,使LiO快速分解为O和Li。在光照下,锂氧电池的往返效率为94.0%,放电和充电电压分别为3.12 V和3.32 V。我们的研究结果表明,Co - TABQ纳米片中金属离子与配体的轨道相互作用决定了锂氧电池的光捕获和氧电催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验