Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium.
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9000, Belgium.
J Proteome Res. 2021 Feb 5;20(2):1165-1177. doi: 10.1021/acs.jproteome.0c00350. Epub 2021 Jan 19.
In the context of bacterial infections, it is imperative that physiological responses can be studied in an integrated manner, meaning a simultaneous analysis of both the host and the pathogen responses. To improve the sensitivity of detection, data-independent acquisition (DIA)-based proteomics was found to outperform data-dependent acquisition (DDA) workflows in identifying and quantifying low-abundant proteins. Here, by making use of representative bacterial pathogen/host proteome samples, we report an optimized hybrid library generation workflow for DIA mass spectrometry relying on the use of data-dependent and -predicted spectral libraries. When compared to searching DDA experiment-specific libraries only, the use of hybrid libraries significantly improved peptide detection to an extent suggesting that infection-relevant host-pathogen conditions could be profiled in sufficient depth without the need of a priori bacterial pathogen enrichment when studying the bacterial proteome. Proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD017904 and PXD017945.
在细菌感染的情况下,必须能够以综合的方式研究生理反应,这意味着同时分析宿主和病原体的反应。为了提高检测的灵敏度,人们发现基于数据非依赖性采集(DIA)的蛋白质组学在鉴定和定量低丰度蛋白方面优于数据依赖性采集(DDA)工作流程。在这里,我们利用有代表性的细菌病原体/宿主蛋白质组样本,报告了一种优化的 DIA 质谱混合文库生成工作流程,该流程依赖于使用数据依赖和预测的光谱文库。与仅搜索 DDA 实验特定文库相比,混合文库的使用显著提高了肽的检测程度,这表明在研究细菌蛋白质组时,无需进行细菌病原体的预先富集,就可以足够深入地分析与感染相关的宿主-病原体条件。蛋白质组学数据已通过 PRIDE 合作伙伴存储库提交到 ProteomeXchange 联盟,数据集标识符为 PXD017904 和 PXD017945。