Suppr超能文献

基于状态相互作用状态平均自旋受限系综参考柯恩-沈方法的机器学习辅助激发态分子动力学

Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach.

作者信息

Ha Jong-Kwon, Kim Kicheol, Min Seung Kyu

机构信息

Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.

出版信息

J Chem Theory Comput. 2021 Feb 9;17(2):694-702. doi: 10.1021/acs.jctc.0c01261. Epub 2021 Jan 20.

Abstract

We present a machine learning-assisted excited state molecular dynamics (ML-ESMD) based on the ensemble density functional theory framework. Since we represent a diabatic Hamiltonian in terms of generalized valence bond ansatz within the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS) method, we can avoid singularities near conical intersections, which are crucial in excited state molecular dynamics simulations. We train the diabatic Hamiltonian elements and their analytical gradients with the SchNet architecture to construct machine learning models, while the phase freedom of off-diagonal elements of the Hamiltonian is cured by introducing the phase-less loss function. Our machine learning models show reasonable accuracy with mean absolute errors of ∼0.1 kcal/mol and ∼0.5 kcal/mol/Å for the diabatic Hamiltonian elements and their gradients, respectively, for penta-2,4-dieniminium cation. Moreover, by exploiting the diabatic representation, our models can predict correct conical intersection structures and their topologies. In addition, our ML-ESMD simulations give almost identical result with a direct dynamics at the same level of theory.

摘要

我们提出了一种基于系综密度泛函理论框架的机器学习辅助激发态分子动力学(ML-ESMD)方法。由于我们在态相互作用态平均自旋限制系综参考Kohn-Sham(SI-SA-REKS)方法中,根据广义价键假设来表示非绝热哈密顿量,因此可以避免在激发态分子动力学模拟中至关重要的锥形交叉点附近的奇点。我们使用SchNet架构训练非绝热哈密顿量元素及其解析梯度,以构建机器学习模型,同时通过引入无相损失函数来解决哈密顿量非对角元素的相位自由度问题。对于戊-2,4-二亚胺阳离子,我们的机器学习模型显示出合理的精度,非绝热哈密顿量元素及其梯度的平均绝对误差分别约为0.1 kcal/mol和约0.5 kcal/mol/Å。此外,通过利用非绝热表示,我们的模型可以预测正确的锥形交叉点结构及其拓扑。此外,我们的ML-ESMD模拟在相同理论水平下与直接动力学给出了几乎相同的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验