Suppr超能文献

股静脉-颈静脉体外膜肺氧合下的结构性再循环和难治性低氧血症。

Structural recirculation and refractory hypoxemia under femoro-jugular veno-venous extracorporeal membrane oxygenation.

机构信息

Critical Care Unit, Lapeyronie University Hospital, Montpellier Cedex 5, France.

出版信息

Artif Organs. 2021 Aug;45(8):893-902. doi: 10.1111/aor.13916. Epub 2021 Mar 8.

Abstract

The performance of each veno-venous extracorporeal membrane oxygenation (vv-ECMO) configuration is determined by the anatomic context and cannula position. A mathematical model was built considering bicaval specificities to simulate femoro-jugular configuration. The main parameters to define were cardiac output (Q ), blood flow in the superior vena cava (Q ), extracorporeal pump flow (Q ), and pulmonary shunt (k ). The obtained variables were extracorporeal flow ratio in the superior vena cava (EFR  = Q /[Q  + Q ]), recirculation coefficient (R), effective extracorporeal pump flow (Q  = [1 - R] × Q ), Q /Q ratio, and arterial blood oxygen saturation (SaO ). EFR increased logarithmically when Q increased. High Q or high Q /Q decreased EFR (range, 68%-85% for Q of 5 L/min). R also increased following a logarithmic shape when Q increased. The R rise was earlier and higher for low Q and high Q /Q (range, 12%-49% for Q of 5 L/min). The Q /Q ratio (between 0 and 1) was equal to EFR for moderate and high Q . The Q /Q ratio presented the same logarithmic profile when Q increased, reaching a plateau (range, 0.67-0.91 for Q /Q  = 1; range, 0.75-0.94 for Q /Q  = 1.5). The Q /Q ratio was linearly associated with SaO for a given pulmonary shunt. SaO  < 90% was observed when the pulmonary shunt was high (Q /Q  ≤ 0.7 with k  = 0.7 or Q /Q  ≤ 0.8 with k  = 0.8). Femoro-jugular vv-ECMO generates a systematic structural recirculation that gradually increases with Q . EFR determines the Q /Q ratio, and thereby oxygen delivery and the superior cava shunt. EFR cannot exceed a limit value, explaining refractory hypoxemia in extreme situations.

摘要

每种静脉-静脉体外膜肺氧合(vv-ECMO)配置的性能取决于解剖结构和插管位置。为了模拟股-颈配置,建立了一个考虑双腔静脉特异性的数学模型。需要定义的主要参数包括心输出量(Q)、上腔静脉血流量(Q)、体外泵流量(Q)和肺分流(k)。得到的变量包括上腔静脉的体外血流比(EFR=Q/[Q+Q])、再循环系数(R)、有效体外泵流量(Q=(1-R)×Q)、Q/Q 比和动脉血氧饱和度(SaO)。当 Q 增加时,EFR 呈对数增加。高 Q 或高 Q/Q 降低 EFR(Q 为 5L/min 时,范围为 68%-85%)。当 Q 增加时,R 也呈对数增加。对于低 Q 和高 Q/Q,R 上升更早、更高(Q 为 5L/min 时,范围为 12%-49%)。Q/Q 比(0 到 1 之间)在中等和高 Q 时等于 EFR。当 Q 增加时,Q/Q 比呈相同的对数曲线,达到平台(Q/Q=1 时,范围为 0.67-0.91;Q/Q=1.5 时,范围为 0.75-0.94)。对于给定的肺分流,Q/Q 比与 SaO 呈线性相关。当肺分流较高时(k=0.7 时,Q/Q≤0.7;k=0.8 时,Q/Q≤0.8),SaO<90%。股-颈 vv-ECMO 会产生系统性的结构再循环,该循环随着 Q 的增加而逐渐增加。EFR 决定了 Q/Q 比,从而决定了氧输送和上腔静脉分流。EFR 不能超过一个极限值,这解释了在极端情况下难治性低氧血症的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验