Suppr超能文献

使用机器学习估计Wi-Fi网络上视频流的PQoS

Estimating PQoS of Video Streaming on Wi-Fi Networks Using Machine Learning.

作者信息

Morshedi Maghsoud, Noll Josef

机构信息

EyeNetworks AS, 0680 Oslo, Norway.

Department of Technology Systems, University of Oslo, 2007 Kjeller, Norway.

出版信息

Sensors (Basel). 2021 Jan 17;21(2):621. doi: 10.3390/s21020621.

Abstract

Video on demand (VoD) services such as YouTube have generated considerable volumes of Internet traffic in homes and buildings in recent years. While Internet service providers deploy fiber and recent wireless technologies such as 802.11ax to support high bandwidth requirement, the best-effort nature of 802.11 networks and variable wireless medium conditions hinder users from experiencing maximum quality during video streaming. Hence, Internet service providers (ISPs) have an interest in monitoring the perceived quality of service (PQoS) in customer premises in order to avoid customer dissatisfaction and churn. Since existing approaches for estimating PQoS or quality of experience (QoE) requires external measurement of generic network performance parameters, this paper presents a novel approach to estimate the PQoS of video streaming using only 802.11 specific network performance parameters collected from wireless access points. This study produced datasets comprising 802.11n/ac/ax specific network performance parameters labelled with PQoS in the form of mean opinion scores (MOS) to train machine learning algorithms. As a result, we achieved as many as 93-99% classification accuracy in estimating PQoS by monitoring only 802.11 parameters on off-the-shelf Wi-Fi access points. Furthermore, the 802.11 parameters used in the machine learning model were analyzed to identify the cause of quality degradation detected on the Wi-Fi networks. Finally, ISPs can utilize the results of this study to provide predictable and measurable wireless quality by implementing non-intrusive monitoring of customers' perceived quality. In addition, this approach reduces customers' privacy concerns while reducing the operational cost of analytics for ISPs.

摘要

近年来,诸如YouTube之类的视频点播(VoD)服务在家庭和建筑物中产生了大量的互联网流量。虽然互联网服务提供商部署了光纤以及诸如802.11ax之类的最新无线技术来支持高带宽需求,但802.11网络尽力而为的特性以及可变的无线介质条件阻碍了用户在视频流传输过程中体验到最高质量。因此,互联网服务提供商(ISP)有兴趣监控客户场所中的感知服务质量(PQoS),以避免客户不满和流失。由于现有的估计PQoS或体验质量(QoE)的方法需要对通用网络性能参数进行外部测量,本文提出了一种新颖的方法,仅使用从无线接入点收集的802.11特定网络性能参数来估计视频流的PQoS。本研究生成了数据集,该数据集包含以平均意见得分(MOS)形式标记有PQoS的802.11n/ac/ax特定网络性能参数,用于训练机器学习算法。结果,通过仅在现成的Wi-Fi接入点上监控802.11参数,我们在估计PQoS方面实现了高达93%-99%的分类准确率。此外,对机器学习模型中使用的802.11参数进行了分析,以确定在Wi-Fi网络上检测到的质量下降的原因。最后,ISP可以利用本研究的结果,通过对客户的感知质量进行非侵入式监控来提供可预测和可测量的无线质量。此外,这种方法在降低ISP分析运营成本的同时,减少了客户对隐私问题的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af5/7829984/80c4220d93e9/sensors-21-00621-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验