Suppr超能文献

用于分层 Glycine max (L.) Merr. 植物铜毒性反应和耐受机制的回归模型。

Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants.

机构信息

Department of Agronomy, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil.

Department of Animal and Plant Biology, State University of Londrina (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, 86057-970, Brazil.

出版信息

Planta. 2021 Jan 22;253(2):43. doi: 10.1007/s00425-021-03573-9.

Abstract

Root antioxidant defense, restricted root-to-shoot Cu translocation, altered nutrient partition, and leaf gas exchange adjustments occurred as tolerance mechanisms of soybean plants to increasing soil Cu levels. The intensive application of copper (Cu) fungicides has been related to the accumulation of this metal in agricultural soils. This study aimed to evaluate the effects of increasing soil Cu levels on soybean (Glycine max) plants. Soybean was cultivated under greenhouse conditions in soils containing different Cu concentrations (11.2, 52.3, 79.4, 133.5, 164.0, 205.1, or 243.8 mg kg), and biochemical and morphophysiological plant responses were analyzed through linear and nonlinear regression models. Although Cu concentrations around 50 mg kg promoted some positive effects on the initial development of soybean plants (e.g., increased root length and dry weight), these Cu concentrations also induced root oxidative stress and activated defense mechanisms (such as the induction of antioxidant response, N and S accumulation in the roots). At higher concentrations, Cu led to growth inhibition (mainly of the root), nutritional imbalance, and damage to the photosynthetic apparatus of soybean plants, resulting in decreased CO assimilation and stomatal conductance. In contrast, low translocation of Cu to the leaves, conservative water use, and increased carboxylation efficiency contributed to the partial mitigation of Cu-induced stress. These responses allowed soybean plants treated with Cu levels in the soil as high as 90 mg kg to maintain growth parameters higher than or similar to those of plants in the non-contaminated soil. These data provide a warning for the potentially deleterious consequences of the increasing use of Cu-based fungicides. However, it is necessary to verify how the responses to Cu contamination are affected by different types of soil and soybean cultivars.

摘要

根系抗氧化防御、限制根到梢的铜转运、养分分配改变以及叶片气体交换的调整,这些都是大豆植株对土壤铜水平升高的耐受机制。铜(Cu)杀菌剂的大量使用与这种金属在农业土壤中的积累有关。本研究旨在评估土壤 Cu 水平升高对大豆(Glycine max)植株的影响。在温室条件下,大豆在含有不同 Cu 浓度(11.2、52.3、79.4、133.5、164.0、205.1 或 243.8 mg kg)的土壤中进行种植,并通过线性和非线性回归模型分析了生化和形态生理学植物响应。尽管 50 mg kg 左右的 Cu 浓度对大豆植株的初期生长有一些积极影响(例如,根长和干重增加),但这些 Cu 浓度也会导致根系氧化应激和激活防御机制(如抗氧化反应的诱导、根部氮和硫的积累)。在较高浓度下,Cu 会导致生长抑制(主要是根系)、营养失衡以及对大豆植株光合器官的损害,导致 CO2 同化和气孔导度降低。相比之下,Cu 向叶片的低转运、保守的水分利用以及羧化效率的提高有助于部分缓解 Cu 诱导的胁迫。这些响应使大豆植株在土壤中 Cu 浓度高达 90 mg kg 的情况下,仍能维持高于或类似于无污染土壤中植株的生长参数。这些数据为 Cu 基杀菌剂使用量增加可能带来的有害后果提供了警示。然而,有必要验证不同类型的土壤和大豆品种对 Cu 污染响应的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验