Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
J Chem Phys. 2020 Mar 7;152(9):094103. doi: 10.1063/1.5139935.
Electron paramagnetic resonance (EPR) spectra of molecular spin centers undergoing reorientational motion are commonly simulated using the stochastic Liouville equation (SLE) with a rigid-body hindered Brownian diffusion model. Current SLE theory applies to specific spin systems such as nitroxides and to high-symmetry orientational potentials. In this work, we extend the SLE theory to arbitrary spin systems with any number of spins and any type of spin Hamiltonian interaction term, as well as to arbitrarily complex orientational potentials. We also examine the limited accuracy of the frequency-to-field conversion used to obtain field-swept EPR spectra and present a more accurate approach. The extensions allow for the simulation of EPR spectra of all types of spin labels (nitroxides, copper, and gadolinium) attached to proteins in low-symmetry environments.
电子顺磁共振(EPR)谱的分子自旋中心进行重定向运动通常使用随机李代数方程(SLE)与刚性体受阻布朗扩散模型进行模拟。目前的 SLE 理论适用于特定的自旋系统,如氮氧自由基和高对称取向势能。在这项工作中,我们将 SLE 理论扩展到任意数量的自旋和任何类型的自旋哈密顿相互作用项的任意自旋系统,以及任意复杂的取向势能。我们还研究了用于获得场扫描 EPR 谱的频率到场转换的有限精度,并提出了一种更精确的方法。这些扩展允许模拟所有类型的自旋标记(氮氧自由基、铜和钆)在低对称环境中与蛋白质结合的 EPR 谱。