Suppr超能文献

由核壳纳米颗粒合成单分散高熵合金纳米催化剂。

Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles.

作者信息

Chen Yifan, Zhan Xun, Bueno Sandra L A, Shafei Ibrahim H, Ashberry Hannah M, Chatterjee Kaustav, Xu Lin, Tang Yawen, Skrabalak Sara E

机构信息

Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.

出版信息

Nanoscale Horiz. 2021 Mar 1;6(3):231-237. doi: 10.1039/d0nh00656d. Epub 2021 Jan 22.

Abstract

High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

摘要

高熵合金(HEA)纳米颗粒(NPs)因其几乎无限的成分、可定制的活性位点和高耐久性,在电催化领域具有巨大潜力。然而,通过胶体途径将这些成分复杂的结构合成单分散纳米颗粒仍然是一个挑战,因为金属前驱体还原速率不同会导致相分离。在此,我们报告了通过退火将核壳纳米颗粒转化为高熵合金纳米颗粒,并保持样品的单分散性。通过种子介导的共还原制备PdCu@PtNiCo纳米颗粒,证明了这种制备高质量高熵合金纳米颗粒的潜在通用途径,其中Pt、Ni和Co在溶液中共沉积在PdCu种子上。然后通过退火将这些多金属纳米颗粒转化为单晶和单相PdCuPtNiCo纳米颗粒。由于其小粒径、高度分散的Pt/Pd含量和低元素扩散率,这些高熵合金纳米颗粒被发现是氧还原反应的高效耐用催化剂。它们对四电子转移途径也具有高度选择性。我们期望这种新的合成策略将促进用于催化和其他应用的新型高熵合金纳米颗粒的合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验