Bourke D L, Ontell M, Taylor F
Department of Neurobiology, Anatomy and Cell Science, University of Pittsburgh, School of Medicine, Pennsylvania 15261.
Am J Anat. 1988 Jan;181(1):1-11. doi: 10.1002/aja.1001810102.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.
年轻的营养不良(dy)小鼠肌肉能够“自发”再生(即在没有外部创伤的情况下再生);然而,到小鼠8周龄时,这种再生就会停止。有人提出,营养不良肌肉中再生的停止可能是由于疾病早期肌卫星细胞有丝分裂能力的耗尽。为了验证这一假设,已对14至16周龄的129 ReJ/++和129 ReJ/dydy小鼠进行了布比卡因处理的全趾长伸肌原位移植。移植后的营养不良肌肉能够在移植后100天产生并维持356±22条肌纤维,这一数量与年龄匹配的营养不良肌肉中的数量相似。老年营养不良肌肉在遭受极端创伤后再生的能力表明,“自发”再生的停止是由于肌卫星细胞有丝分裂能力耗尽以外的因素。此外,移植后的正常肌肉和营养不良肌肉之间的肌卫星细胞频率没有显著差异(移植后100天)。移植肌肉中的肌卫星细胞频率与年龄匹配、未受创伤的肌肉中的频率相似。虽然年轻营养不良肌肉的移植改变了通常与小鼠营养不良相关的组织病理学变化的表型表达,但老年营养不良肌肉的移植显示出广泛的结缔组织浸润,并且与年龄匹配的正常肌肉移植相比,肌纤维明显减少。早在移植后14天,就有可能区分老年、正常和营养不良肌肉的移植。有人提出,移植时存在于营养不良肌肉中的结缔组织基质可能在移植过程中存活下来。