Suppr超能文献

3D 纳米花状层状双氢氧化物修饰的季铵化壳聚糖/聚乙烯醇复合阴离子导电膜用于燃料电池。

3D nanoflower-like layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite anion conductive membranes for fuel cells.

机构信息

Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei, 432000, China.

Department of Fashion and Design, Lee-Ming Institute of Technology, New Taipei City, 243, Taiwan.

出版信息

Carbohydr Polym. 2021 Mar 15;256:117439. doi: 10.1016/j.carbpol.2020.117439. Epub 2020 Nov 24.

Abstract

To solve the trade-off problem among ionic conductivity, mechanical and chemical stability of anion exchange membranes (AEMs), quaternized chitosan (QCS) was first prepared and then was blended with polyvinyl alcohol (PVA) to improve mechanical strength of QCS. Afterwards, three-dimensional (3D) hierarchical flower-like layered double hydroxides (LDHs) were prepared via one-pot ethylene glycol-assisted solvothermal method, and then were incorporated into QCS/PVA blend matrix to fabricate composite AEMs. By constructing 3D hierarchical structure, the active sites of LDH nanosheets are fully exposed, thus impressive ion conductivity, alkali and fuel resistant ability of LDH nanosheets can be rationally utilized. The composite membrane displayed the maximum OH conductivity of 25.7 mS cm, which was 48.6 % higher than that of the pristine membrane. Alkaline stability measurement proved that the composite membranes kept residual ionic conductivity of as high as 92 % after immersion in a 2 M KOH for 100 h. Due to the decreased methanol permeability and increased conductivity, the composite membrane with 6% LDHs content exhibited a peak power density of 73 mW cm at 60 °C, whereas the pristine membrane demonstrated only 40 mW cm.

摘要

为了解决阴离子交换膜(AEMs)的离子电导率、机械和化学稳定性之间的权衡问题,首先制备了季铵化壳聚糖(QCS),然后将其与聚乙烯醇(PVA)混合以提高 QCS 的机械强度。之后,通过一锅乙二醇辅助溶剂热法制备了三维(3D)分层花状层状双氢氧化物(LDHs),然后将其掺入 QCS/PVA 共混基质中以制备复合 AEMs。通过构建 3D 分层结构,充分暴露了 LDH 纳米片的活性位,从而可以合理利用 LDH 纳米片的高离子电导率、耐碱和耐燃料能力。该复合膜的 OH-电导率最大值为 25.7 mS cm,比原始膜高 48.6%。碱性稳定性测量证明,复合膜在 2 M KOH 中浸泡 100 h 后仍保持高达 92%的残余离子电导率。由于甲醇渗透率降低和电导率增加,含 6%LDHs 的复合膜在 60°C 时表现出 73 mW cm 的峰值功率密度,而原始膜仅为 40 mW cm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验