Ard M Colin, Edland Steven D
Department of Neuroscience, University of California San Diego, La Jolla, California.
Department of Family Preventive Medicine Division of Biostatistics, University of California San Diego, La Jolla, California.
Int J Stat Med Res. 2012;1(1):45-50. doi: 10.6000/1929-6029.2012.01.01.03.
Change in a quantitative trait is commonly employed as an endpoint in two-wave longitudinal studies. For example, early phase clinical trials often use two-wave designs with biomarker endpoints to confirm that a treatment affects the putative target treatment pathway before proceeding to larger scale clinical efficacy trials. Power calculations for such designs are straightforward if pilot data from longitudinal investigations of similar duration to the proposed study are available. Often longitudinal pilot data of similar duration are not available, and simplifying assumptions are used to calculate sample size from cross-sectional data, one standard approach being to use a formula based on variance estimated from cross sectional data and correlation estimates abstracted from the literature or inferred from experience with similar endpoints. An implicit assumption of this standard approach is that the variance of the quantitative trait is the same at baseline and follow-up. In practice, this assumption rarely holds, and sample size estimates by this standard formula can be dramatically anti-conservative. Even when longitudinal pilot data for estimating parameters required in sample size calculations are available, sample size calculations will be biased if the interval from baseline to follow-up is not of similar duration to that proposed for the study being designed. In this paper we characterize the magnitude of bias in sample size estimates when formula assumptions do not hold and derive alternative conservative formulas for sample size required to achieve nominal power.
定量性状的变化通常被用作两波纵向研究的终点。例如,早期临床试验经常采用具有生物标志物终点的两波设计,以便在进行更大规模的临床疗效试验之前,确认一种治疗方法是否影响假定的目标治疗途径。如果能获得与拟开展研究持续时间相似的纵向调查的试点数据,那么此类设计的功效计算就很简单。通常情况下,无法获得持续时间相似的纵向试点数据,因此会使用简化假设,根据横断面数据来计算样本量,一种标准方法是使用基于横断面数据估计的方差以及从文献中提取或根据类似终点的经验推断出的相关性估计值的公式。这种标准方法的一个隐含假设是,定量性状的方差在基线和随访时是相同的。在实际中,这个假设很少成立,通过这个标准公式估计的样本量可能会极大地反保守。即使可以获得用于估计样本量计算所需参数的纵向试点数据,但如果从基线到随访的时间间隔与拟设计研究的时间间隔不同,样本量计算也会有偏差。在本文中,我们描述了公式假设不成立时样本量估计偏差的大小,并推导了实现标称功效所需样本量的替代保守公式。