Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
J Am Chem Soc. 2021 Feb 3;143(4):1948-1958. doi: 10.1021/jacs.0c11530. Epub 2021 Jan 25.
Fluoroarenes are widely used in medicinal, agricultural, and materials chemistry, and yet their production remains a critical challenge in organic synthesis. Indeed, the nearly identical physical properties of these vital building blocks hinders their purification by traditional methods, such as flash chromatography or distillation. As a result, the Balz-Schiemann reaction is currently employed to prepare fluoroarenes instead of more atom-economical C-H fluorination reactions, which produce inseparable mixtures of regioisomers. Herein, we propose an alternative solution to this problem: the purification of mixtures of fluoroarenes using metal-organic frameworks (MOFs). Specifically, we demonstrate that controlling the interaction of fluoroarenes with adjacent coordinatively unsaturated Mg centers within a MOF enables the separation of fluoroarene mixtures with unparalleled selectivities. Liquid-phase multicomponent equilibrium adsorption data and breakthrough measurements coupled with van der Waals-corrected density functional theory calculations reveal that the materials Mg(dobdc) (dobdc = 2,5-dioxidobenzene-1,4-dicarboxylate) and Mg(-dobdc) (-dobdc = 2,4-dioxidobenzene-1,5-dicarboxylate) are capable of separating the difluorobenzene isomers from one another. Additionally, these frameworks facilitate the separations of fluoroanisoles, fluorotoluenes, and fluorochlorobenzenes. In addition to enabling currently unfeasible separations for the production of fluoroarenes, our results suggest that carefully controlling the interaction of isomers with not one but two strong binding sites within a MOF provides a general strategy for achieving challenging liquid-phase separations.
氟芳烃广泛应用于医学、农业和材料化学领域,但它们的生产仍然是有机合成中的一个关键挑战。事实上,这些重要构建块的物理性质几乎完全相同,阻碍了它们通过传统方法(如快速色谱或蒸馏)进行纯化。因此,目前采用Balz-Schiemann 反应来制备氟芳烃,而不是更原子经济性的 C-H 氟化反应,后者会产生不可分离的区域异构体混合物。在此,我们提出了一个替代方案:使用金属有机骨架(MOFs)来纯化氟芳烃混合物。具体来说,我们证明了控制氟芳烃与 MOF 中相邻配位不饱和 Mg 中心的相互作用,可以实现氟芳烃混合物的无与伦比的选择性分离。液相多组分平衡吸附数据和突破测量以及修正后的范德华密度泛函理论计算表明,材料 Mg(dobdc)(dobdc = 2,5-二氧代苯-1,4-二羧酸酯)和 Mg(-dobdc)(-dobdc = 2,4-二氧代苯-1,5-二羧酸酯)能够将二氟苯异构体彼此分离。此外,这些骨架还促进了氟苯甲醚、氟甲苯和氟氯苯的分离。除了能够实现目前无法实现的氟芳烃生产分离之外,我们的结果还表明,通过 MOF 中的两个强结合位点来精细控制异构体的相互作用,为实现具有挑战性的液相分离提供了一种通用策略。