Suppr超能文献

基于放射组学的预测前庭神经鞘瘤立体定向放射外科治疗后长期疗效。

Radiomics-Based Prediction of Long-Term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery.

机构信息

Gamma Knife Center, Department of Neurosurgery, ETZ Hospital, Tilburg.

Eindhoven University of Technology, Eindhoven.

出版信息

Otol Neurotol. 2020 Dec;41(10):e1321-e1327. doi: 10.1097/MAO.0000000000002886.

Abstract

OBJECTIVE

Stereotactic radiosurgery (SRS) is one of the treatment modalities for vestibular schwannomas (VSs). However, tumor progression can still occur after treatment. Currently, it remains unknown how to predict long-term SRS treatment outcome. This study investigates possible magnetic resonance imaging (MRI)-based predictors of long-term tumor control following SRS.

STUDY DESIGN

Retrospective cohort study.

SETTING

Tertiary referral center.

PATIENTS

Analysis was performed on a database containing 735 patients with unilateral VS, treated with SRS between June 2002 and December 2014. Using strict volumetric criteria for long-term tumor control and tumor progression, a total of 85 patients were included for tumor texture analysis.

INTERVENTION(S): All patients underwent SRS and had at least 2 years of follow-up.

MAIN OUTCOME MEASURE(S): Quantitative tumor texture features were extracted from conventional MRI scans. These features were supplied to a machine learning stage to train prediction models. Prediction accuracy, sensitivity, specificity, and area under the receiver operating curve (AUC) are evaluated.

RESULTS

Gray-level co-occurrence matrices, which capture statistics from specific MRI tumor texture features, obtained the best prediction scores: 0.77 accuracy, 0.71 sensitivity, 0.83 specificity, and 0.93 AUC. These prediction scores further improved to 0.83, 0.83, 0.82, and 0.99, respectively, for tumors larger than 5 cm.

CONCLUSIONS

Results of this study show the feasibility of predicting the long-term SRS treatment response of VS tumors on an individual basis, using MRI-based tumor texture features. These results can be exploited for further research into creating a clinical decision support system, facilitating physicians, and patients to select a personalized optimal treatment strategy.

摘要

目的

立体定向放射外科(SRS)是治疗前庭神经鞘瘤(VS)的方法之一。然而,治疗后肿瘤仍可能进展。目前,尚不清楚如何预测 SRS 治疗的长期效果。本研究探讨了 SRS 治疗后长期肿瘤控制的可能基于磁共振成像(MRI)的预测因素。

研究设计

回顾性队列研究。

设置

三级转诊中心。

患者

分析了一个数据库,其中包含 735 例单侧 VS 患者,他们于 2002 年 6 月至 2014 年 12 月接受了 SRS 治疗。使用长期肿瘤控制和肿瘤进展的严格体积标准,共有 85 例患者被纳入肿瘤纹理分析。

干预措施

所有患者均接受 SRS 治疗,并进行了至少 2 年的随访。

主要观察指标

从常规 MRI 扫描中提取定量肿瘤纹理特征。这些特征被提供给机器学习阶段,以训练预测模型。评估预测准确性、敏感性、特异性和接收器操作曲线(AUC)下的面积。

结果

灰度共生矩阵,它从特定的 MRI 肿瘤纹理特征中捕获统计信息,获得了最佳的预测评分:0.77 准确性、0.71 敏感性、0.83 特异性和 0.93 AUC。对于大于 5cm 的肿瘤,这些预测评分进一步提高至 0.83、0.83、0.82 和 0.99。

结论

本研究结果表明,使用基于 MRI 的肿瘤纹理特征,对 VS 肿瘤的 SRS 治疗反应进行个体预测是可行的。这些结果可用于进一步研究创建临床决策支持系统,以帮助医生和患者选择个性化的最佳治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验