Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
Bioelectrochemistry. 2021 Aug;140:107736. doi: 10.1016/j.bioelechem.2020.107736. Epub 2020 Dec 29.
The interactions of dsDNA with rifampicin (RF) or with rifampicin after encapsulation in phospholipid micelles (nanosome/rifampicin) (NRF) were studied electrochemically. Screen-printed electrodes (SPEs) modified by stable dispersions of multi-wolled carbon nanotubes (MWCNTs) in aqueous solution of poly(1,2-butadiene)-block-poly(2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymer were used for quantitative electrochemical investigation of direct electrochemical oxidation of guanine at E = 0.591 V (vs. Ag/AgCl) and adenine at E = 0.874 V (vs. Ag/AgCl) of dsDNA and its change in the presence of RF or NRF. Due to RF or NRF interaction with dsDNA, the differential pulse voltammetry (DPV) peak currents of guanine and adenine decreased and the peak potentials shifted to more positive values with increasing drug concentration (RF or NRF). Binding constants (K) of complexes RF-dsDNA and NRF-dsDNA were calculated based on adenine and guanine oxidation signals. The K values for RF-dsDNA were 1.48 × 10 M/8.56 × 10 M, while for NRF-dsDNA were 2.51 × 10 M/1.78 × 10 M (based on adenine or guanine oxidation signals, respectively). The values of K revealed intercalation mode of interaction with dsDNA for RF and mixed type of interaction (intercalation and electrostatic mode) for NRF. The estimated values of ΔG (Gibbs free energy) of the complex formation confirmed that drug-dsDNA interactions are spontaneous and favourable reactions.
采用稳定的多壁碳纳米管(MWCNTs)在聚 1,2-丁二烯-嵌段-聚 2-(二甲氨基)乙基甲基丙烯酸酯(PB-b-PDMAEMA)嵌段共聚物水溶液中的分散体修饰的丝网印刷电极(SPE),用于定量电化学研究双螺旋 DNA 中鸟嘌呤在 E = 0.591 V(相对于 Ag/AgCl)和腺嘌呤在 E = 0.874 V(相对于 Ag/AgCl)的直接电化学氧化,以及在 rifampicin(RF)或包裹在磷脂胶束中的 rifampicin(nanosome/rifampicin)(NRF)存在下 DNA 的变化。由于 RF 或 NRF 与 dsDNA 的相互作用,随着药物浓度(RF 或 NRF)的增加,鸟嘌呤和腺嘌呤的差分脉冲伏安法(DPV)峰电流减小,峰电位向更正的方向移动。基于腺嘌呤和鸟嘌呤的氧化信号,计算了 RF-dsDNA 和 NRF-dsDNA 配合物的结合常数(K)。RF-dsDNA 的 K 值为 1.48×10^4 M/8.56×10^4 M,而 NRF-dsDNA 的 K 值为 2.51×10^4 M/1.78×10^4 M(分别基于腺嘌呤或鸟嘌呤的氧化信号)。K 值表明 RF 与 dsDNA 的相互作用为嵌入模式,而 NRF 与 dsDNA 的相互作用为混合模式(嵌入和静电模式)。配合物形成的估计值ΔG(吉布斯自由能)证实了药物与 dsDNA 的相互作用是自发和有利的反应。