Greenhall John, Hakoda Christopher, Davis Eric S, Chillara Vamshi Krishna, Pantea Cristian
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2251-2258. doi: 10.1109/TUFFC.2021.3054716. Epub 2021 May 25.
Acoustic time-of-flight (ToF) measurements enable noninvasive material characterization, acoustic imaging, and defect detection and are commonly used in industrial process control, biomedical devices, and national security. When characterizing a fluid contained in a cylinder or pipe, ToF measurements are hampered by guided waves, which propagate around the cylindrical shell walls and obscure the waves propagating through the interrogated fluid. We present a technique for overcoming this limitation based on a broadband linear chirp excitation and cross correlation detection. By using broadband excitation, we exploit the dispersion of the guided waves, wherein different frequencies propagate at different velocities, thus distorting the guided wave signal while leaving the bulk wave signal in the fluid unperturbed. We demonstrate the measurement technique experimentally and using numerical simulation. We characterize the technique performance in terms of measurement error, signal-to-noise-ratio, and resolution as a function of the linear chirp center frequency and bandwidth. We discuss the physical phenomena behind the guided bulk wave interactions and how to utilize these phenomena to optimize the measurements in the fluid.
声学飞行时间(ToF)测量能够实现非侵入性材料表征、声学成像和缺陷检测,并且常用于工业过程控制、生物医学设备和国家安全领域。在表征圆柱或管道中所包含的流体时,飞行时间测量会受到导波的阻碍,导波会在圆柱壳壁周围传播,从而使穿过被检测流体传播的波变得模糊不清。我们提出了一种基于宽带线性调频激励和互相关检测来克服这一限制的技术。通过使用宽带激励,我们利用了导波的色散特性,其中不同频率以不同速度传播,从而使导波信号失真,而流体中的体波信号不受干扰。我们通过实验和数值模拟演示了该测量技术。我们根据测量误差、信噪比和分辨率来表征该技术性能,这些都是线性调频中心频率和带宽的函数。我们讨论了导波与体波相互作用背后的物理现象,以及如何利用这些现象来优化流体中的测量。