Gupta Vijay, Laha Biswajit, Khullar Sadhika, Mandal Sanjay K
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India.
Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India.
Dalton Trans. 2021 Feb 16;50(6):2221-2232. doi: 10.1039/d0dt04196c.
The self-assembly of Mn(ii), bis(tridentate) ligands and bent dicarboxylate linkers under ambient conditions has been exploited to generate a series of 1D coordination polymers in good yields. For a set of seven compounds, structural isomerization of these architectures is demonstrated through the variation of length and nature of the spacer between the tridentate capping sites of the bis(tridentate) ligands, such as tpbn (N,N',N'',N'''-tetrakis-(2-pyridylmethyl)-1,4-diaminobutane), tphxn (N,N',N'',N'''-tetrakis-(2-pyridylmethyl)-1,6-diaminohexane), and tpxn (N,N',N'',N'''-tetrakis-(2-pyridylmethyl)-xylylamine) or by varying the bent dicarboxylate linker 4,4'-(dimethylsilanediyl)bis-benzoic acid (H2L1) or 4,4'-oxybis-benzoic acid (H2L2). These compounds have been structurally characterized by single-crystal and powder X-ray diffraction, FTIR, and thermogravimetric and elemental analyses. This study reveals that the supramolecular structural variation can be precisely controlled either by a judicious selection of reaction conditions or linker/ligand combinations. For example, the self-assembly of Mn(ii), tpbn and H2L1 in DMF/EtOH/water affords a mixture of products (1 and 1a) while changing the solvent combination to EtOH/water results in the generation of a single isomer (1a) in a highly selective manner. On the other hand, for the Mn(ii)-tphxn system, different structural isomers have been isolated by varying the dicarboxylates, H2L1 and H2L2 (2vs.5). Similarly, for the Mn(ii)-H2L2 system, a variation in the spacer chain length of bis(tridentate) ligands, tpbn and tphxn resulted in the formation of different structural isomers (4vs.5).
在环境条件下,利用锰(II)、双(三齿)配体和弯曲的二羧酸连接体的自组装,以良好的产率生成了一系列一维配位聚合物。对于一组七种化合物,通过改变双(三齿)配体三齿封端位点之间间隔基的长度和性质,如tpbn(N,N',N'',N''' - 四(2 - 吡啶甲基) - 1,4 - 二氨基丁烷)、tphxn(N,N',N'',N''' - 四(2 - 吡啶甲基) - 1,6 - 二氨基己烷)和tpxn(N,N',N'',N''' - 四(2 - 吡啶甲基) - 二甲苯二胺),或者通过改变弯曲的二羧酸连接体4,4'-(二甲基硅烷二基)双苯甲酸(H2L1)或4,4'-氧双苯甲酸(H2L2),证明了这些结构的结构异构化。这些化合物已通过单晶和粉末X射线衍射、傅里叶变换红外光谱、热重分析和元素分析进行了结构表征。这项研究表明,通过明智地选择反应条件或连接体/配体组合,可以精确控制超分子结构的变化。例如,锰(II)、tpbn和H2L1在DMF/乙醇/水中的自组装得到产物混合物(1和1a),而将溶剂组合改为乙醇/水则以高度选择性的方式生成单一异构体(1a)。另一方面,对于锰(II) - tphxn体系,通过改变二羧酸盐H2L1和H2L2(2对5)分离出了不同的结构异构体。同样,对于锰(II) - H2L2体系,双(三齿)配体tpbn和tphxn的间隔链长度变化导致形成不同的结构异构体(4对5)。