Tzeng Biing-Chiau, Lin Chan-Yan, Hung Jun-Wei, Chen Si-Ying, Chang A Hsiu-Hwa, Lee Gene-Hsiang
Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan.
Department of Chemistry, National Dong Hwa University, 1, Section 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan.
Inorg Chem. 2021 Feb 15;60(4):2694-2703. doi: 10.1021/acs.inorgchem.0c03571. Epub 2021 Jan 27.
The reaction of AuCl(SMe) with equimolar NaONCS [ONCS = (aza-18-crown-6)dithiocarbamate] in CHCN gave [Au(ONCS)]·2CHCN (·2CHCN), where six other ·solvates (solvates = 2DMF, 2DMSO, 2THF, 2acetone, 1.5toluene, and 1.5anisole) can be successfully isolated from different crystal-growing processes (i.e., ether diffusion, layer method, or evaporation in air) by dissolving the dry powder samples of ·2CHCN in the respective solvents, and their crystal structures are all determined by X-ray diffraction as well. It is noted that there are different intermolecular Au(I)···Au(I) contacts in combination with various luminescences for ·solvates and indeed there is a close relationship between intermolecular Au(I)···Au(I) contacts [i.e., 2.8254(7)-2.9420(5) Å] and luminescence energies (i.e., 554-604 nm), including three examples of ·2CHCN, ·0.5-xylene, and ·-butylbenzene·HO reported in our previous work. In ·solvates, the toluene and -butylbenzene solvates have the shortest [2.8254(7)-2.8289(7) Å] and longest [2.9420(5) Å] intermolecular Au(I)···Au(I) contacts, respectively, and consequently they show the respective lowest (604 nm) and highest (554 nm) luminescence energies. Indeed, ·solvates exhibit different types of time-dependent luminescence upon solvate loss in air. Furthermore, B3LYP/LanL2DZ calculation results can help to clarify the relationship between intermolecular Au(I)···Au(I) contacts and luminescence energies for ·solvates.
AuCl(SMe) 与等摩尔的 NaONCS [ONCS = (氮杂-18-冠-6)二硫代氨基甲酸盐] 在乙腈中反应生成 [Au(ONCS)]·2CHCN (·2CHCN),通过将 ·2CHCN 的干粉样品溶解在各自的溶剂中,可从不同的晶体生长过程(即乙醚扩散、分层法或空气中蒸发)中成功分离出其他六种溶剂化物(溶剂化物 = 2DMF、2DMSO、2THF、2丙酮、1.5甲苯和1.5苯甲醚),并且它们的晶体结构也都通过X射线衍射确定。值得注意的是,溶剂化物中存在不同的分子间Au(I)···Au(I) 接触并伴有各种发光现象,实际上分子间Au(I)···Au(I) 接触 [即 2.8254(7)-2.9420(5) Å] 与发光能量(即 554-604 nm)之间存在密切关系,包括我们之前工作中报道的 ·2CHCN、·0.5-二甲苯和 ·-丁基苯·HO 的三个例子。在溶剂化物中,甲苯和 -丁基苯溶剂化物分别具有最短 [2.8254(7)-2.8289(7) Å] 和最长 [2.9420(5) Å] 的分子间Au(I)···Au(I) 接触,因此它们分别显示出最低(604 nm)和最高(554 nm)的发光能量。实际上,溶剂化物在空气中失去溶剂时会表现出不同类型的时间相关发光。此外,B3LYP/LanL2DZ 计算结果有助于阐明溶剂化物中分子间Au(I)···Au(I) 接触与发光能量之间的关系。