文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全基因组加倍赋予肿瘤细胞独特的遗传脆弱性。

Whole-genome doubling confers unique genetic vulnerabilities on tumour cells.

机构信息

Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.

Department of Medicine, Boston University School of Medicine, Boston, MA, USA.

出版信息

Nature. 2021 Feb;590(7846):492-497. doi: 10.1038/s41586-020-03133-3. Epub 2021 Jan 27.


DOI:10.1038/s41586-020-03133-3
PMID:33505027
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7889737/
Abstract

Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development. Cells that undergo WGD (WGD cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD cells are more dependent than WGD cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify KIF18A, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD cells, its loss induces notable mitotic errors in WGD cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD cancer cells while sparing the normal, non-transformed WGD cells that comprise human tissue.

摘要

全基因组加倍(WGD)在人类癌症中很常见,它发生在肿瘤发生的早期,产生遗传不稳定的四倍体细胞,为肿瘤的发展提供动力。经历全基因组加倍的细胞(WGD 细胞)必须适应其异常的四倍体状态;然而,这些适应的性质,以及它们是否赋予可以被治疗利用的脆弱性,尚不清楚。在这里,我们使用大约 10000 个人类原发性癌症样本的测序数据和约 600 个癌细胞系的必需性数据,表明 WGD 产生了常见的遗传特征,同时伴随着独特的脆弱性。我们揭示 WGD 细胞比 WGD 细胞更依赖于纺锤体组装检查点、DNA 复制因子和蛋白酶体功能的信号。我们还发现,编码有丝分裂驱动蛋白的 KIF18A 蛋白对于 WGD 细胞的存活是特异性必需的。尽管 KIF18A 在 WGD 细胞中进行有丝分裂时对于准确的染色体分离大多是可有可无的,但它的缺失会在 WGD 细胞中引起明显的有丝分裂错误,最终损害细胞活力。总的来说,我们的研究结果表明了针对 WGD 癌细胞的新策略,同时可以保留构成人体组织的正常、未转化的 WGD 细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/49822c134f9e/nihms-1656217-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/3fd9222ef203/nihms-1656217-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/068306961a3c/nihms-1656217-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/f6177d71870a/nihms-1656217-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/85236272602e/nihms-1656217-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/2f4a46dee24d/nihms-1656217-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/413d9dcd570f/nihms-1656217-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/7021dee8268b/nihms-1656217-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/4594fcf2f9f9/nihms-1656217-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/6a95833011ec/nihms-1656217-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/410b1aa75a3b/nihms-1656217-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/6c47db6dcb69/nihms-1656217-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/49822c134f9e/nihms-1656217-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/3fd9222ef203/nihms-1656217-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/068306961a3c/nihms-1656217-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/f6177d71870a/nihms-1656217-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/85236272602e/nihms-1656217-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/2f4a46dee24d/nihms-1656217-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/413d9dcd570f/nihms-1656217-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/7021dee8268b/nihms-1656217-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/4594fcf2f9f9/nihms-1656217-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/6a95833011ec/nihms-1656217-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/410b1aa75a3b/nihms-1656217-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/6c47db6dcb69/nihms-1656217-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/7889737/49822c134f9e/nihms-1656217-f0004.jpg

相似文献

[1]
Whole-genome doubling confers unique genetic vulnerabilities on tumour cells.

Nature. 2021-2

[2]
Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition.

Nature. 2021-2

[3]
Kinesins regulate the heterogeneity in centrosome clustering after whole-genome duplication.

Life Sci Alliance. 2024-10

[4]
Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition.

Oncotarget. 2016-1-5

[5]
Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers.

Nat Cancer. 2024-1

[6]
Whole-genome doubling in tissues and tumors.

Trends Genet. 2023-12

[7]
Whole-Genome Duplication and Genome Instability in Cancer Cells: Double the Trouble.

Int J Mol Sci. 2023-2-13

[8]
Targeting the Mitotic Kinesin KIF18A in Chromosomally Unstable Cancers: Hit Optimization Toward an In Vivo Chemical Probe.

J Med Chem. 2022-3-24

[9]
Whole-genome doubling drives oncogenic loss of chromatin segregation.

Nature. 2023-3

[10]
Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis.

J Cell Sci. 2002-3-1

引用本文的文献

[1]
Molecular subtyping of endometrial carcinoma cell lines uncovers subtype-specific targetable vulnerabilities.

NPJ Precis Oncol. 2025-7-24

[2]
E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells.

Nat Commun. 2025-7-21

[3]
Ongoing genome doubling shapes evolvability and immunity in ovarian cancer.

Nature. 2025-7-16

[4]
Genome doubling fuels ovarian cancer evolution and immune dysregulation.

Nature. 2025-7-16

[5]
Selective identification of polyploid hepatocellular carcinomas with poor prognosis by artificial intelligence-based pathological image recognition.

Commun Med (Lond). 2025-7-3

[6]
Tumor aneuploidy as a prognostic and predictive biomarker in immune checkpoint blockade.

Nat Genet. 2025-6-30

[7]
Half the Chromosome It Used to Be: Identifying Cancer Treatments Targeting Aneuploid Losses.

Genes (Basel). 2025-6-14

[8]
The multifaceted functions of SPC25 in cancer: from molecular pathways to targeted therapy.

Front Med (Lausanne). 2025-5-7

[9]
Aneuploidy generates enhanced nucleotide dependency and sensitivity to metabolic perturbation.

Genes Dev. 2025-6-2

[10]
Differences of clinical features, prognosis and genetic mutations in Chinese patients with malignant melanoma and additional primary tumours.

Ann Med. 2025-12

本文引用的文献

[1]
Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution.

Nat Genet. 2020-3-5

[2]
Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma.

Nat Med. 2019-12-2

[3]
Context is everything: aneuploidy in cancer.

Nat Rev Genet. 2019-9-23

[4]
hypeR: an R package for geneset enrichment workflows.

Bioinformatics. 2020-2-15

[5]
A Cancer-Associated Missense Mutation in PP2A-Aα Increases Centrosome Clustering during Mitosis.

iScience. 2019-9-27

[6]
Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase.

J Cell Biol. 2019-2-7

[7]
kinesin-8 stabilizes the kinetochore-microtubule interaction.

J Cell Biol. 2018-12-11

[8]
Cytokinesis defects and cancer.

Nat Rev Cancer. 2019-1

[9]
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.

Nat Commun. 2018-11-2

[10]
Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors.

Nat Genet. 2018-8-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索