Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
Addict Biol. 2021 Jul;26(4):e13018. doi: 10.1111/adb.13018. Epub 2021 Jan 28.
Gut microbiota is known to be transferred from the mother to their offspring. This study determines whether the innate microbiota of rats selectively bred for generations as high alcohol drinkers play a role in their alcohol intake. Wistar-derived high-drinker UChB rats (intake 10-g ethanol/kg/day) administered nonabsorbable oral antibiotics before allowing access to alcohol, reducing their voluntary ethanol intake by 70%, an inhibition that remained after the antibiotic administration was discontinued. Oral administration of Lactobacillus rhamnosus Gorbach-Goldin (GG) induced the synthesis of FGF21, a vagal β-Klotho receptor agonist, and partially re-invoked a mechanism that reduces alcohol intake. The vagus nerve constitutes the main axis transferring gut microbiota information to the brain ("microbiota-gut-brain" axis). Bilateral vagotomy inhibited rat alcohol intake by 75%. Neither antibiotic treatment nor vagotomy affected total fluid intake. A microbiota-mediated marked inflammatory environment was observed in the gut of ethanol-naïve high-drinker rats, as gene expression of proinflammatory cytokines (TNF-α; IL-6; IL-1β) was significantly reduced by nonabsorbable antibiotic administration. Gut cytokines are known to activate the vagus nerve, while vagal activation induces pro-rewarding effects in nucleus accumbens. Both alcoholics and alcohol-preferring rats share a marked preference for sweet tastes-likely an evolutionary trait to seek sweet fermented fruits. Saccharin intake by UChB rats was inhibited by 75%-85% by vagotomy or oral antibiotic administration, despite saccharin-induced polydipsia. Overall, data indicate that the mechanisms that normally curtail heavy drinking are inhibited in alcohol-preferring animals and inform a gut microbiota origin. Whether it applies to other mammals and humans merits further investigation.
肠道微生物群已知可从母亲传递给后代。本研究旨在确定经过几代选育成为高酒精饮用者的大鼠的固有微生物群是否在其酒精摄入量中发挥作用。在允许大鼠接触酒精之前,给源自 Wistar 的高饮酒 UChB 大鼠(摄入 10g 乙醇/千克/天)给予不可吸收的口服抗生素,可使它们的自愿性乙醇摄入量减少 70%,且在停止抗生素给药后仍存在抑制作用。口服给予鼠李糖乳杆菌 Gorbach-Goldin(GG)可诱导 FGF21 的合成,FGF21 是一种迷走神经 β-Klotho 受体激动剂,部分恢复了减少酒精摄入量的机制。迷走神经构成了将肠道微生物群信息传递到大脑的主要轴(“微生物群-肠道-大脑”轴)。双侧迷走神经切断术可使大鼠的酒精摄入量减少 75%。抗生素处理或迷走神经切断术均不影响总液体摄入量。在未接触乙醇的高饮酒大鼠的肠道中观察到明显的微生物群介导的炎症环境,因为不可吸收的抗生素给药可显著降低促炎细胞因子(TNF-α;IL-6;IL-1β)的基因表达。已知肠道细胞因子可激活迷走神经,而迷走神经激活可在伏隔核中诱导奖赏作用。酒精成瘾者和酒精偏好大鼠都对甜味有明显的偏好-这可能是一种寻求甜发酵水果的进化特征。UChB 大鼠的蔗糖摄入量通过迷走神经切断术或口服抗生素给药可抑制 75%-85%,尽管蔗糖可诱导多饮。总的来说,数据表明,在酒精偏好动物中,正常限制大量饮酒的机制受到抑制,并提供了一种肠道微生物群起源的信息。它是否适用于其他哺乳动物和人类值得进一步研究。
Addict Biol. 2021-7
Drug Alcohol Depend. 2022-7-1
Alcohol Clin Exp Res. 2011-9-6
Alcohol Clin Exp Res. 2018-8-13
J Extracell Vesicles. 2025-3
Microbiome. 2024-6-17
Neurobiol Stress. 2024-3-18
Biol Psychiatry. 2024-2-15
Int J Biol Sci. 2023