Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.
Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
Cancer Res. 2021 Mar 15;81(6):1528-1539. doi: 10.1158/0008-5472.CAN-20-1810. Epub 2021 Jan 28.
EGFR is frequently amplified, mutated, and overexpressed in malignant gliomas. Yet the EGFR-targeted therapies have thus far produced only marginal clinical responses, and the underlying mechanism remains poorly understood. Using an inducible oncogenic EGFR-driven glioma mouse model system, our current study reveals that a small population of glioma cells can evade therapy-initiated apoptosis and potentiate relapse development by adopting a mesenchymal-like phenotypic state that no longer depends on oncogenic EGFR signaling. Transcriptome analyses of proximal and distal treatment responses identified TGFβ/YAP/Slug signaling cascade activation as a major regulatory mechanism that promotes therapy-induced glioma mesenchymal lineage transdifferentiation. Following anti-EGFR treatment, TGFβ secreted from stressed glioma cells acted to promote YAP nuclear translocation that stimulated upregulation of the pro-mesenchymal transcriptional factor SLUG and subsequent glioma lineage transdifferentiation toward a stable therapy-refractory state. Blockade of this adaptive response through suppression of TGFβ-mediated YAP activation significantly delayed anti-EGFR relapse and prolonged animal survival. Together, our findings shed new insight into EGFR-targeted therapy resistance and suggest that combinatorial therapies of targeting both EGFR and mechanisms underlying glioma lineage transdifferentiation could ultimately lead to deeper and more durable responses. SIGNIFICANCE: This study demonstrates that molecular reprogramming and lineage transdifferentiation underlie anti-EGFR therapy resistance and are clinically relevant to the development of new combinatorial targeting strategies against malignant gliomas with aberrant EGFR signaling.
表皮生长因子受体(EGFR)在恶性神经胶质瘤中频繁扩增、突变和过表达。然而,迄今为止,EGFR 靶向治疗仅产生了轻微的临床反应,其潜在机制仍知之甚少。本研究采用诱导性致癌性 EGFR 驱动的神经胶质瘤小鼠模型系统,揭示了一小部分神经胶质瘤细胞可以通过采用不再依赖致癌性 EGFR 信号的间充质样表型状态,逃避治疗诱导的细胞凋亡并增强复发的发展。对近端和远端治疗反应的转录组分析确定了 TGFβ/YAP/Slug 信号级联激活是促进治疗诱导的神经胶质瘤间质谱系转分化的主要调控机制。在抗 EGFR 治疗后,应激神经胶质瘤细胞分泌的 TGFβ 可促进 YAP 核易位,刺激促间充质转录因子 SLUG 的上调,并随后导致神经胶质瘤谱系向稳定的治疗抵抗状态进行转分化。通过抑制 TGFβ 介导的 YAP 激活来阻断这种适应性反应,显著延迟了抗 EGFR 复发并延长了动物的存活期。总之,我们的研究结果为 EGFR 靶向治疗耐药性提供了新的见解,并表明针对 EGFR 以及神经胶质瘤谱系转分化的机制的联合治疗策略最终可能会产生更深入和更持久的反应。意义:这项研究表明,分子重编程和谱系转分化是抗 EGFR 治疗耐药的基础,并且与具有异常 EGFR 信号的恶性神经胶质瘤的新联合靶向策略的开发具有临床相关性。