Investigation performed at the Defense Health Agency, Military Health System for the US Military, Rosslyn, Virginia, USA.
Am J Sports Med. 2021 Mar;49(3):764-772. doi: 10.1177/0363546520987240. Epub 2021 Feb 1.
The preferred patient-reported outcome measure for the assessment of shoulder conditions continues to evolve. Previous studies correlating the Patient-Reported Outcomes Measurement Information System (PROMIS) computer adaptive tests (CATs) to the American Shoulder and Elbow Surgeons (ASES) score have focused on a singular domain (pain or physical function) but have not evaluated the combined domains of pain and physical function that compose the ASES score. Additionally, previous studies have not provided a multivariable prediction tool to convert PROMIS scores to more familiar legacy scores.
To establish a valid predictive model of ASES scores using a nonlinear combination of PROMIS domains for physical function and pain.
Cohort study (Diagnosis); Level of evidence, 3.
The Military Orthopaedics Tracking Injuries and Outcomes Network (MOTION) database is a prospectively collected repository of patient-reported outcomes and intraoperative variables. Patients in MOTION research who underwent shoulder surgery and completed the ASES, PROMIS Physical Function, and PROMIS Pain Interference at varying time points were included in the present analysis. Nonlinear multivariable predictive models were created to establish an ASES index score and then validated using "leave 1 out" techniques and minimal clinically important difference /substantial clinical benefit (MCID/SCB) analysis.
A total of 909 patients completed the ASES, PROMIS Physical Function, and PROMIS Pain Interference at presurgery, 6 weeks, 6 months, and 1 year after surgery, providing 1502 complete observations. The PROMIS CAT predictive model was strongly validated to predict the ASES (Pearson coefficient = 0.76-0.78; = 0.57-0.62; root mean square error = 13.3-14.1). The MCID/SCB for the ASES was 21.7, and the best ASES index MCID/SCB was 19.4, suggesting that the derived ASES index is effective and can reliably re-create ASES scores.
The PROMIS CAT predictive models are able to approximate the ASES score within 13 to 14 points, which is 7 points more accurate than the ASES MCID/SCB derived from the sample. Our ASES index algorithm, which is freely available online (https://osf.io/ctmnd/), has a lower MCID/SCB than the ASES itself. This algorithm can be used to decrease patient survey burden by 11 questions and provide a reliable ASES analog to clinicians.
评估肩部疾病的首选患者报告结局测量工具仍在不断发展。先前将患者报告的测量信息系统 (PROMIS) 计算机自适应测试 (CAT) 与美国肩肘外科医师协会 (ASES) 评分相关联的研究侧重于单一领域(疼痛或身体功能),但并未评估构成 ASES 评分的疼痛和身体功能的综合领域。此外,先前的研究没有提供多变量预测工具来将 PROMIS 评分转换为更熟悉的传统评分。
使用 PROMIS 身体功能和疼痛领域的非线性组合建立 ASES 评分的有效预测模型。
队列研究(诊断);证据水平,3 级。
军事骨科追踪损伤和结局网络 (MOTION) 数据库是一个前瞻性收集患者报告结果和术中变量的存储库。在 MOTION 研究中接受肩部手术并在不同时间点完成 ASES、PROMIS 身体功能和 PROMIS 疼痛干扰的患者被纳入本分析。创建了非线性多变量预测模型来建立 ASES 指数评分,然后使用“留一法”技术和最小临床重要差异/实质性临床获益 (MCID/SCB) 分析进行验证。
共有 909 名患者在术前、6 周、6 个月和 1 年后完成了 ASES、PROMIS 身体功能和 PROMIS 疼痛干扰,共提供了 1502 个完整观察值。PROMIS CAT 预测模型可强烈预测 ASES(Pearson 系数=0.76-0.78; =0.57-0.62;均方根误差=13.3-14.1)。ASES 的 MCID/SCB 为 21.7,最佳 ASES 指数 MCID/SCB 为 19.4,表明所推导的 ASES 指数是有效的,可以可靠地重新创建 ASES 评分。
PROMIS CAT 预测模型能够在 13 到 14 分的范围内近似 ASES 评分,比从样本中得出的 ASES MCID/SCB 更准确 7 分。我们的 ASES 指数算法(可在网上免费获得,https://osf.io/ctmnd/)的 MCID/SCB 低于 ASES 本身。该算法可以减少 11 个问题的患者调查负担,并为临床医生提供可靠的 ASES 模拟。