Suppr超能文献

任意域上具有奇异力的椭圆方程的浸入边界神经网络求解。

An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains.

机构信息

Centro de Investigación en Matemáticas A.C, CIMAT-Mérida, México.

Consejo Nacional de Ciencia y Tecnología, CONACYT, México.

出版信息

Math Biosci Eng. 2020 Nov 18;18(1):22-56. doi: 10.3934/mbe.2021002.

Abstract

In this paper, we present a deep learning framework for solving two-dimensional elliptic equations with singular forces on arbitrary domains. This work follows the ideas of the physical-inform neural networks to approximate the solutions and the immersed boundary method to deal with the singularity on an interface. Numerical simulations of elliptic equations with regular solutions are initially analyzed in order to deeply investigate the performance of such methods on rectangular and irregular domains. We study the deep neural network solutions for different number of training and collocation points as well as different neural network architectures. The accuracy is also compared with standard schemes based on finite differences. In the case of singular forces, the analytical solution is continuous but the normal derivative on the interface has a discontinuity. This discontinuity is incorporated into the equations as a source term with a delta function which is approximated using a Peskin's approach. The performance of the proposed method is analyzed for different interface shapes and domains. Results demonstrate that the immersed boundary neural network can approximate accurately the analytical solution for elliptic problems with and without singularity.

摘要

在本文中,我们提出了一种深度学习框架,用于求解任意域上具有奇异力的二维椭圆方程。这项工作遵循物理信息神经网络的思路,以逼近解,并采用浸入边界法处理界面上的奇点。首先对具有正则解的椭圆方程进行数值模拟,以便深入研究这些方法在矩形和不规则域上的性能。我们研究了不同训练和配置点数量以及不同神经网络结构的深度神经网络解。还将准确性与基于有限差分的标准方案进行了比较。在奇异力的情况下,解析解是连续的,但界面上的法向导数有不连续性。该不连续性作为源项包含在方程中,使用 Peskin 方法对其进行逼近。针对不同的界面形状和域分析了所提出方法的性能。结果表明,浸入边界神经网络可以准确逼近具有和不具有奇点的椭圆问题的解析解。

相似文献

2
A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
J Comput Phys. 2007 Dec 10;227(2):1046-1074. doi: 10.1016/j.jcp.2007.08.021. Epub 2007 Sep 5.
3
MIB Galerkin method for elliptic interface problems.
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
4
Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.
J Comput Phys. 2012 Feb 1;231(4):1440-1461. doi: 10.1016/j.jcp.2011.10.026. Epub 2011 Nov 6.
5
MIB method for elliptic equations with multi-material interfaces.
J Comput Phys. 2011 Jun 1;230(12):4588-4615. doi: 10.1016/j.jcp.2011.02.037.
6
An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods.
Commun Comput Phys. 2012;12(2):515-527. doi: 10.4208/cicp.070211.150811s. Epub 2012 Feb 20.
7
Some new analysis results for a class of interface problems.
Math Methods Appl Sci. 2015 Dec 1;38(18):4530-4539. doi: 10.1002/mma.2865. Epub 2013 Jun 20.
8
WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS.
J Comput Phys. 2013 Oct 1;250:106-125. doi: 10.1016/j.jcp.2013.04.042.
9
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
Comput Math Appl. 2014 Oct 1;68(7):719-745. doi: 10.1016/j.camwa.2014.07.022.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验