Suppr超能文献

使用机器学习预测肾脏废弃。

Predicting Kidney Discard Using Machine Learning.

机构信息

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL.

Center for Engineering and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.

出版信息

Transplantation. 2021 Sep 1;105(9):2054-2071. doi: 10.1097/TP.0000000000003620.

Abstract

BACKGROUND

Despite the kidney supply shortage, 18%-20% of deceased donor kidneys are discarded annually in the United States. In 2018, 3569 kidneys were discarded.

METHODS

We compared machine learning (ML) techniques to identify kidneys at risk of discard at the time of match run and after biopsy and machine perfusion results become available. The cohort consisted of adult deceased donor kidneys donated between December 4, 2014, and July 1, 2019. The studied ML models included Random Forests (RF), Adaptive Boosting (AdaBoost), Neural Networks (NNet), Support Vector Machines (SVM), and K-nearest Neighbors (KNN). In addition, a Logistic Regression (LR) model was fitted and used for comparison with the ML models' performance.

RESULTS

RF outperformed other ML models. Of 8036 discarded kidneys in the test dataset, LR correctly classified 3422 kidneys, whereas RF correctly classified 4762 kidneys (area under the receiver operative curve [AUC]: 0.85 versus 0.888, and balanced accuracy: 0.681 versus 0.759). For the kidneys with kidney donor profile index of >85% (6079 total), RF significantly outperformed LR in classifying discard and transplant prediction (AUC: 0.814 versus 0.717, and balanced accuracy: 0.732 versus 0.657). More than 388 kidneys were correctly classified using RF. Including biopsy and machine perfusion variables improved the performance of LR and RF (LR's AUC: 0.888 and balanced accuracy: 0.74 versus RF's AUC: 0.904 and balanced accuracy: 0.775).

CONCLUSIONS

Kidneys that are at risk of discard can be more accurately identified using ML techniques such as RF.

摘要

背景

尽管肾脏供应短缺,但美国每年仍有 18%-20%的已故供体肾脏被丢弃。2018 年,有 3569 个肾脏被丢弃。

方法

我们比较了机器学习(ML)技术,以在匹配运行时以及活检和机器灌注结果可用时识别有丢弃风险的肾脏。该队列包括 2014 年 12 月 4 日至 2019 年 7 月 1 日期间捐赠的成年已故供体肾脏。所研究的 ML 模型包括随机森林(RF)、自适应增强(AdaBoost)、神经网络(NNet)、支持向量机(SVM)和 K-最近邻(KNN)。此外,还拟合了逻辑回归(LR)模型,并将其与 ML 模型的性能进行了比较。

结果

RF 优于其他 ML 模型。在测试数据集的 8036 个丢弃肾脏中,LR 正确分类了 3422 个肾脏,而 RF 正确分类了 4762 个肾脏(接收者操作特征曲线下面积 [AUC]:0.85 与 0.888,平衡准确性:0.681 与 0.759)。对于肾源评分指数>85%的肾脏(共 6079 个),RF 在分类丢弃和移植预测方面显著优于 LR(AUC:0.814 与 0.717,平衡准确性:0.732 与 0.657)。RF 正确分类了 388 多个肾脏。包含活检和机器灌注变量可提高 LR 和 RF 的性能(LR 的 AUC:0.888 和平衡准确性:0.74 与 RF 的 AUC:0.904 和平衡准确性:0.775)。

结论

可以使用 RF 等 ML 技术更准确地识别有丢弃风险的肾脏。

相似文献

1
Predicting Kidney Discard Using Machine Learning.
Transplantation. 2021 Sep 1;105(9):2054-2071. doi: 10.1097/TP.0000000000003620.
2
Predictors of Deceased Donor Kidney Discard in the United States.
Transplantation. 2017 Jul;101(7):1690-1697. doi: 10.1097/TP.0000000000001238.
3
Diagnosing the Decades-Long Rise in the Deceased Donor Kidney Discard Rate in the United States.
Transplantation. 2017 Mar;101(3):575-587. doi: 10.1097/TP.0000000000001539.
4
Factors leading to the discard of deceased donor kidneys in the United States.
Kidney Int. 2018 Jul;94(1):187-198. doi: 10.1016/j.kint.2018.02.016. Epub 2018 May 5.
5
Epidemiology of Kidney Discard from Expanded Criteria Donors Undergoing Donation after Circulatory Death.
Clin J Am Soc Nephrol. 2016 Feb 5;11(2):317-23. doi: 10.2215/CJN.07190715. Epub 2015 Dec 14.
6
Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80.
Transplantation. 2017 Jun;101(6):1125-1133. doi: 10.1097/TP.0000000000001388.
7
Characteristics and Performance of Unilateral Kidney Transplants from Deceased Donors.
Clin J Am Soc Nephrol. 2018 Jan 6;13(1):118-127. doi: 10.2215/CJN.06550617. Epub 2017 Dec 7.
8
A Re-evaluation of Discarded Deceased Donor Kidneys in the UK: Are Usable Organs Still Being Discarded?
Transplantation. 2017 Jul;101(7):1698-1703. doi: 10.1097/TP.0000000000001542.
9
The role of procurement biopsies in acceptance decisions for kidneys retrieved for transplant.
Clin J Am Soc Nephrol. 2014 Mar;9(3):562-71. doi: 10.2215/CJN.07610713. Epub 2014 Feb 20.
10
Determinants of discard of expanded criteria donor kidneys: impact of biopsy and machine perfusion.
Am J Transplant. 2008 Apr;8(4):783-92. doi: 10.1111/j.1600-6143.2008.02157.x. Epub 2008 Feb 19.

引用本文的文献

1
Improving deceased donor kidney utilization: predicting risk of nonuse with interpretable models.
Front Artif Intell. 2025 Aug 13;8:1638574. doi: 10.3389/frai.2025.1638574. eCollection 2025.
2
Predicting rapid kidney function decline in middle-aged and elderly Chinese adults using machine learning techniques.
BMC Med Inform Decis Mak. 2025 Jun 6;25(1):210. doi: 10.1186/s12911-025-03043-2.
3
Patient and Caregiver Perceptions on the Allocation Process and Waitlist, and Accepting a Less-Than-Ideal Kidney: A Canadian Survey.
Can J Kidney Health Dis. 2025 Apr 3;12:20543581251324608. doi: 10.1177/20543581251324608. eCollection 2025.
5
Predictive value of machine learning model based on CT values for urinary tract infection stones.
iScience. 2024 Oct 23;27(12):110843. doi: 10.1016/j.isci.2024.110843. eCollection 2024 Dec 20.
6
Present and Future Applications of Artificial Intelligence in Kidney Transplantation.
J Clin Med. 2024 Oct 5;13(19):5939. doi: 10.3390/jcm13195939.
7
Preoperative Risk Assessment of Early Kidney Graft Loss.
Transplant Direct. 2024 May 16;10(6):e1636. doi: 10.1097/TXD.0000000000001636. eCollection 2024 Jun.
10
Predicting older-donor kidneys' post-transplant renal function using pre-transplant data.
Nav Res Logist. 2023 Feb;70(1):21-33. doi: 10.1002/nav.22083. Epub 2022 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验