Suppr超能文献

道路交通事故伤害研究主题的文献计量分析,1928-2018 年。

A bibliometric analysis of road traffic injury research themes, 1928-2018.

机构信息

School of Economics and Management, Beihang University, Beijing, China.

School of Management, Qufu Normal University, Rizhao, China.

出版信息

Int J Inj Contr Saf Promot. 2021 Jun;28(2):266-275. doi: 10.1080/17457300.2021.1881558. Epub 2021 Feb 3.

Abstract

Road traffic accidents have become an important social issue worldwide. This study aims to analyse the research status of road traffic injury from 1928 to 2018 and discuss the future research trends. Co-word analysis was applied to analyse 4,184 articles collected from the core collection of Web of Science. Cluster analysis and social network analysis (SNA) were adopted to group keywords, visualize the links between them, and indicate their importance. Strategic diagram was used to reveal the network status of each cluster. The results lead to the following conclusions: (1) 'Road traffic accident', 'injury', 'road safety', 'mortality', and 'risk factor' are at the centre of social network, indicating that these keywords play the most important roles in the field of road traffic injury research. (2) A total of 60 high-frequency keywords are divided into five clusters, namely 'accident causes leading to injury', 'analysis methods', 'health & injury', 'safety management', and 'road traffic', indicating that they are the main sub-fields of road traffic injury research. (3) 'Risk perception' and 'systems theory' are widely discussed topics emerging in recent years. On the basic of the five clusters, valuable references are provided for future research.

摘要

道路交通事故已成为全球一个重要的社会问题。本研究旨在分析 1928 年至 2018 年道路交通事故伤害的研究现状,并探讨未来的研究趋势。共词分析应用于分析从科睿唯安 Web of Science 核心合集收录的 4184 篇文章。采用聚类分析和社会网络分析(SNA)对关键词进行分组,可视化它们之间的联系,并显示其重要性。战略图用于揭示每个聚类的网络状态。结果得出以下结论:(1)“道路交通事故”、“伤害”、“道路安全”、“死亡率”和“风险因素”处于社会网络的中心,表明这些关键词在道路交通事故伤害研究领域发挥着最重要的作用。(2)共有 60 个高频关键词分为五个聚类,即“事故致伤原因”、“分析方法”、“健康与伤害”、“安全管理”和“道路交通”,表明它们是道路交通事故伤害研究的主要分支领域。(3)“风险感知”和“系统理论”是近年来广泛讨论的话题。在这五个聚类的基础上,为未来的研究提供了有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验