Suppr超能文献

Shoot 对缺硫条件下水稻根系合成独脚金内酯具有重要作用。

Shoot has important roles in strigolactone production of rice roots under sulfur deficiency.

机构信息

Graduate School of Life Sciences, Toyo University, Gunma, Japan.

出版信息

Plant Signal Behav. 2021 Apr 3;16(4):1880738. doi: 10.1080/15592324.2021.1880738. Epub 2021 Feb 4.

Abstract

Strigolactones (SLs) are a class of plant hormones that control plant architecture. SL levels in roots are determined by the nutrient conditions in the rhizosphere, especially the levels of nitrogen (N) and phosphorus (P). Our previous research showed that SL production is induced in response to deficiency of sulfur (S) as well as of N and P, and inhibits shoot branching, accelerates leaf senescence, and regulates lamina joint angle in rice. Here we show biomass, total S contents, and SL levels in rice under S-sufficient and S-deficient conditions using a split-root system. When one part of the root system was cultured in S-sufficient medium and the other in S-deficient medium (+S/-S), shoot fresh weight was unaffected relative to the +S/+S condition. The shoot weight significantly decreased in -S/-S condition. In contrast, there was no significant difference in root fresh weight between +S and -S conditions. In +S/-S condition, SL levels were systemically reduced in both parts, the shoot S content increased, but the root S content in S-deficient medium was unaffected relative to the -S/-S condition. These results suggest that shoots, not roots, recognize S deficiency, which induces SL production in roots.

摘要

独脚金内酯是一类植物激素,能够控制植物的结构。根系中的独脚金内酯水平取决于根际的养分条件,特别是氮(N)和磷(P)的水平。我们之前的研究表明,独脚金内酯的产生是对硫(S)以及氮和磷缺乏的响应,它可以抑制侧枝分枝、加速叶片衰老,并调节水稻叶片的节间角度。在这里,我们使用分根系统研究了在硫充足和硫缺乏条件下水稻的生物量、总硫含量和独脚金内酯水平。当一部分根系在硫充足的培养基中培养,而另一部分在硫缺乏的培养基中培养(+S/-S)时,与+S/+S 条件相比,地上部鲜重没有受到影响。在-S/-S 条件下,地上部鲜重显著下降。相比之下,在+S 和-S 条件下,根鲜重没有显著差异。在+S/-S 条件下,独脚金内酯水平在两部分都系统降低,地上部硫含量增加,但在硫缺乏培养基中的根硫含量与-S/-S 条件相比没有受到影响。这些结果表明,是地上部而不是根部感知到硫缺乏,从而诱导根部产生独脚金内酯。

相似文献

1
Shoot has important roles in strigolactone production of rice roots under sulfur deficiency.
Plant Signal Behav. 2021 Apr 3;16(4):1880738. doi: 10.1080/15592324.2021.1880738. Epub 2021 Feb 4.
2
How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
Planta. 2012 Jun;235(6):1197-207. doi: 10.1007/s00425-011-1568-8. Epub 2011 Dec 20.
3
Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum.
Planta. 2013 Nov;238(5):885-94. doi: 10.1007/s00425-013-1943-8. Epub 2013 Aug 8.
4
Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots.
Planta. 2015 Mar;241(3):687-98. doi: 10.1007/s00425-014-2208-x. Epub 2014 Nov 23.
5
Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice.
Plant Cell Physiol. 2010 Jul;51(7):1118-26. doi: 10.1093/pcp/pcq084. Epub 2010 Jun 11.
6
Upregulation of is associated with increased strigolactone levels under sulfur deficiency in rice.
Plant Direct. 2018 Apr 11;2(4):e00050. doi: 10.1002/pld3.50. eCollection 2018 Apr.
7
Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice.
Front Plant Sci. 2020 Feb 25;11:135. doi: 10.3389/fpls.2020.00135. eCollection 2020.
8
The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
Planta. 2016 Jun;243(6):1351-60. doi: 10.1007/s00425-016-2503-9. Epub 2016 Apr 4.
10
A strigolactone signal is required for adventitious root formation in rice.
Ann Bot. 2015 Jun;115(7):1155-62. doi: 10.1093/aob/mcv052. Epub 2015 Apr 17.

引用本文的文献

1
Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development.
Int J Mol Sci. 2024 Apr 3;25(7):3978. doi: 10.3390/ijms25073978.

本文引用的文献

1
The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.
Plant Cell. 2020 Oct;32(10):3124-3138. doi: 10.1105/tpc.20.00289. Epub 2020 Aug 13.
2
Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice.
Front Plant Sci. 2020 Feb 25;11:135. doi: 10.3389/fpls.2020.00135. eCollection 2020.
3
Upregulation of is associated with increased strigolactone levels under sulfur deficiency in rice.
Plant Direct. 2018 Apr 11;2(4):e00050. doi: 10.1002/pld3.50. eCollection 2018 Apr.
4
How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a034686. doi: 10.1101/cshperspect.a034686.
5
Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition.
Nat Plants. 2017 Mar 20;3:17029. doi: 10.1038/nplants.2017.29.
6
Strigolactones, a novel carotenoid-derived plant hormone.
Annu Rev Plant Biol. 2015;66:161-86. doi: 10.1146/annurev-arplant-043014-114759. Epub 2015 Jan 26.
7
Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots.
Planta. 2015 Mar;241(3):687-98. doi: 10.1007/s00425-014-2208-x. Epub 2014 Nov 23.
8
Transporters in plant sulfur metabolism.
Front Plant Sci. 2014 Sep 9;5:442. doi: 10.3389/fpls.2014.00442. eCollection 2014.
9
Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency.
Planta. 2014 Aug;240(2):399-408. doi: 10.1007/s00425-014-2096-0. Epub 2014 Jun 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验