Suppr超能文献

利用非结构化的公民科学数据来估算候鸟大尺度季节性迁徙时间的挑战和益处。

Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales.

机构信息

Finnish Meteorological Institute, Helsinki, Finland.

Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.

出版信息

PLoS One. 2021 Feb 4;16(2):e0246572. doi: 10.1371/journal.pone.0246572. eCollection 2021.

Abstract

Millions of bird observations have been entered on online portals in the past 20 years either as checklists or arbitrary individual entries. While several hundred publications have been written on a variety of topics based on bird checklists worldwide, unstructured non-checklist observations have received little attention and praise by academia. In the present study we tested the suitability of non-checklist data to estimate key figures of large-scale migration phenology in four zones covering the whole of Finland. For that purpose, we analysed 10 years of ornithological non-checklist data including over 400 million. individuals of 115 bird species. We discuss bird- and human-induced effects to be considered in handling non-checklist data in this context and describe applied methodologies to address these effects. We calculated 5%, 50% and 95% percentile dates of spring and autumn migration period for all species in all four zones. For validation purposes we compared the temporal distributions of 43 bird species with migration phenology from standardized long-term ringing data in autumn of which 24 species (56%) showed similar medians. In a model approach, non-checklist data successfully revealed latitudinal migration progression in spring and autumn. Overall, non-checklist data proved to be well suited to determine descriptors of migration phenology in Northern Europe which are challenging to attain by any other currently available means. The effort-to-yield ratio of data processing was commensurate to the outcomes. The unprecedented spatiotemporal coverage makes non-checklist data a valuable complement to current migration databases from bird observatories. The basic concept of the present methodology is applicable to data from other bird portals, if combined with local field ornithological knowledge and literature. Species-specific descriptors of migration phenology can be potentially used in climate change studies and to support echo interpretation in radar ornithology.

摘要

在过去的 20 年中,已经有数百万人通过在线门户记录了鸟类观察结果,这些观察结果有的以清单形式出现,有的则是任意的个体记录。虽然已经有数百篇出版物基于世界各地的鸟类清单记录了各种主题,但学术界对非清单记录的观察结果关注甚少,评价也不高。在本研究中,我们测试了非清单数据在估计整个芬兰四个区域内大规模迁徙物候学关键指标方面的适用性。为此,我们分析了 10 年的鸟类学非清单数据,其中包括 115 种鸟类的 4 亿多个个体。我们讨论了在这种情况下处理非清单数据时需要考虑的鸟类和人为因素,并描述了用于解决这些问题的应用方法。我们计算了所有四个区域中所有物种春季和秋季迁徙期的 5%、50%和 95%分位数日期。为了验证目的,我们比较了 43 种鸟类的时间分布与秋季标准化长期环志数据中的迁徙物候学,其中 24 种(56%)表现出相似的中位数。在模型方法中,非清单数据成功揭示了春季和秋季的纬度迁徙进展。总的来说,非清单数据非常适合确定北欧迁徙物候学的描述符,而这些描述符通过其他任何现有手段都难以获得。数据处理的投入产出比是相称的。前所未有的时空覆盖范围使非清单数据成为当前鸟类观测站迁徙数据库的宝贵补充。本方法的基本概念适用于其他鸟类门户的数据,如果结合当地的实地鸟类学知识和文献使用。迁徙物候学的物种特异性描述符可用于气候变化研究,并为雷达鸟类学中的回声解释提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691b/7861542/239bc366b300/pone.0246572.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验