Centre for Medical Physics, Panjab University, Chandigarh, Punjab, India.
Radiation Oncology Department, Institute of Liver and Biliary Sciences, New Delhi, India.
Phys Eng Sci Med. 2021 Mar;44(1):123-134. doi: 10.1007/s13246-020-00961-5. Epub 2021 Feb 4.
To model the interplay effect and minimize it by a selection of optimum parameters value using a predictive model for SBRT of liver cancers. Ten cases of liver tumors treated with the VMAT technique were selected retrospectively. The dosimetric error due to the interplay effect was measured with a micro ionization chamber (0.015cm) in a Quasar phantom simulating the moving tumor. The interplay effect dependent parameter's viz. patient breaths per minute, the amplitude of respiration, fractional dose (FD), plan complexity due to different energies (Relative degree of modulation), degree of modulation due to a different level of dose optimization constraints, and dose rate (DR) were measured. For the predictive model, mathematical equations were modeled in python from 300 combinations of proposed parameters using multivariate regression analysis. It was observed that the dose variation reduced from -8.44% to -5.16% for change in the BPM values from 7 to 31 and similarly for amplitude, the dose variation reduced from -9.44% to -4.93% for change in amplitude value from 16 mm to 2 mm. The DR and FD have a prominent effect with R values of 0.990 and 0.880 respectively. The calculated mean square errors of equations excluding amplitude for the predictive model were 0.90 and 0.82 whereas those for equations excluding BPM were 1.31 and 1.41 for 6 MV and 10 MV beams respectively. The values of the parameters can be prospectively optimized by the use of the predictive model according to clinical situations, so dose variation can be minimized.
为了模拟相互作用效应并通过选择最佳参数值来最小化相互作用效应,我们为肝癌 SBRT 建立了一个预测模型。回顾性选择了 10 例接受 VMAT 技术治疗的肝肿瘤病例。在 Quasar 体模中使用微电离室(0.015cm)测量了由于相互作用效应引起的剂量误差,该体模模拟了移动肿瘤。测量了与相互作用效应相关的参数,如患者每分钟呼吸次数、呼吸幅度、分数剂量(FD)、不同能量引起的计划复杂性(相对调制程度)、不同剂量优化约束水平引起的调制程度以及剂量率(DR)。对于预测模型,使用多元回归分析从 300 种组合的建议参数中在 Python 中建立了数学方程。结果发现,BPM 值从 7 变为 31 时,剂量变化从-8.44%减少到-5.16%,类似地,当振幅值从 16mm 变为 2mm 时,剂量变化从-9.44%减少到-4.93%。DR 和 FD 的影响较大,R 值分别为 0.990 和 0.880。对于预测模型,不包括振幅的方程的平均平方误差分别为 0.90 和 0.82,而不包括 BPM 的方程的平均平方误差分别为 1.31 和 1.41,用于 6MV 和 10MV 射束。可以根据临床情况使用预测模型来前瞻性优化参数值,从而最小化剂量变化。