School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
Chem Soc Rev. 2021 Mar 21;50(6):4062-4099. doi: 10.1039/d0cs00840k. Epub 2021 Feb 5.
Topochemical polymerizations are solid-state reactions driven by the alignment of monomers in the crystalline state. The molecular confinement in the monomer crystal lattice offers precise control over the tacticity, packing and crystallinity of the polymer formed in the topochemical reaction. As topochemical reactions occur under solvent- and catalyst-free conditions, giving products in high yield and selectivity/specificity that do not require tedious chromatographic purification, topochemical polymerizations are highly attractive over traditional solution-phase polymer synthesis. By this method, polymers having sophisticated structures and desired topologies can be availed. Often, such ordered packing confers attractive properties to the topochemically-synthesized polymers. Diverse categories of topochemical polymerizations are known, such as polymerizations via [2+2], [4+4], [4+2], and [3+2] cycloadditions, and polymerization of diynes, triynes, dienes, trienes, and quinodimethanes, each of which proceed under suitable stimuli like heat, light or pressure. Each class of these reactions requires a unique packing arrangement of the corresponding monomers for the smooth reaction and produces polymers with distinct properties. This review is penned with the intent of bringing all the types of topochemical polymerizations into a single platform and communicating the versatility of these lattice-controlled polymerizations. We present a brief history of the development of each category and comprehensively review the topochemical synthesis of fully-organic polymers reported in the last twenty years, particularly in crystals. We mainly focus on the various molecular designs and crystal engineering strategies adopted to align monomers in a suitable orientation for polymerization. Finally, we analyze the current challenges and future perspectives in this research field.
拓扑聚合反应是由单体在晶态中的排列驱动的固态反应。单体晶格中的分子限制提供了对拓扑化学反应中形成的聚合物的立构规整性、堆积和结晶度的精确控制。由于拓扑反应在无溶剂和无催化剂的条件下发生,产物具有高收率和选择性/特异性,不需要繁琐的色谱纯化,因此与传统的溶液相聚合相比,拓扑聚合反应具有很高的吸引力。通过这种方法,可以获得具有复杂结构和所需拓扑结构的聚合物。通常,这种有序堆积赋予拓扑合成聚合物有吸引力的性质。已知多种类型的拓扑聚合反应,例如通过[2+2]、[4+4]、[4+2]和[3+2]环加成以及炔烃、三炔、二烯、三烯和醌二甲基的聚合,每种聚合反应都在合适的刺激(如热、光或压力)下进行。这些反应的每一类都需要相应单体的独特堆积排列以进行顺利反应,并产生具有独特性质的聚合物。这篇综述的目的是将所有类型的拓扑聚合反应纳入一个单一的平台,并传达这些晶格控制的聚合反应的多功能性。我们简要介绍了每一类反应的发展历史,并全面综述了过去二十年中报道的全有机聚合物的拓扑合成,特别是在晶体中的合成。我们主要关注各种分子设计和晶体工程策略,以将单体适当地取向排列以进行聚合。最后,我们分析了该研究领域的当前挑战和未来展望。