Suppr超能文献

通过自动配体导向进化 (AILDE) 方法进行化合物的命中至先导优化的方案。

Protocol for hit-to-lead optimization of compounds by auto ligand directing evolution (AILDE) approach.

机构信息

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.

International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.

出版信息

STAR Protoc. 2021 Feb 1;2(1):100312. doi: 10.1016/j.xpro.2021.100312. eCollection 2021 Mar 19.

Abstract

Hit-to-lead (H2L) optimization is crucial for drug design, which has become an increasing concern in medicinal chemistry. A virtual screening strategy of auto ligand directing evolution (AILDE) has been developed to yield promising lead compounds rapidly and efficiently. The protocol includes instructions for fragment compound library construction, conformational sampling by molecular dynamics simulation, ligand modification by fragment growing, as well as the binding free energy prediction. For complete details on the use and execution of this protocol, please refer to Wu et al. (2020).

摘要

从苗头化合物到先导化合物的优化(H2L)在药物设计中至关重要,这已经成为药物化学领域日益关注的问题。我们开发了一种自动配体定向进化(AILDE)的虚拟筛选策略,以快速高效地获得有前途的先导化合物。该方案包括片段化合物库构建、分子动力学模拟构象采样、片段生长进行配体修饰以及结合自由能预测的说明。有关该方案使用和执行的完整详细信息,请参阅 Wu 等人(2020 年)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c5/7856476/459b3ed1f73c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验