Zhang Yuhong, Zhou Jun, Zhan Binhui, Li Shifang, Zhang Zhixiang
Chinese Academy of Agricultural Sciences Institute of Plant Protection, 243827, Beijing, Beijing, China;
Chinese Academy of Agricultural Sciences Institute of Plant Protection, 243827, Beijing, Beijing, China.
Plant Dis. 2021 Feb 8. doi: 10.1094/PDIS-11-20-2521-PDN.
Mei (Prunus mume Sieb. et Zucc.), widely distributed in East Asian countries for both fruiting- and flowering-purposes, is susceptible to viral infections (Marais et al. 2018). Infection by plum bark necrosis stem pitting-associated virus (PBNSPaV) or little cherry virus 2 (LChV-2) possibly caused overall yield loss in mei in Japan due to incomplete flower development, low fruit bearing rate, and interveinal chlorosis (Numaguchi et al. 2019). Virus-like disease showing mosaic, interveinal chlorosis, vein clearing, or necrotic spot on leaf was observed in mei trees in Beijing, Wuhan, Wuxi, and Nanjing in spring and early summer from 2017 to 2018. Symptomatic leaves collected from the four regions were pooled as two samples for RNA-sequencing (RNA-seq) analysis. After ribosomal RNA (rRNA)-depletion, total RNA extracted by TRNzol reagent (TIANGEN, China) was subjected to library construction using NEBNext Ultra RNA Library Prep Kit (NEB, MA, USA) and sequenced on an Illumina Hiseq 4000 (Novogene, China). Sequencing data was filtered, screened, and assembled as described previously (Zhou et al. 2020) to generate contigs, following by BLAST-x/n search in viral genomes in GenBank. We identified >300 contigs (208-10756 nt) homologous to Asian prunus virus 1 and Asian prunus virus 2 (APV1 and 2), mume virus A (MuVA), PBNSPaV, and peach leaf pitting-associated virus (PLPaV), with 71-100% of nucleotide sequence identity values. APV1 and 2 have been reported in mei in China (Wang et al. 2018), here, we focused on the other three viruses. Contigs homologous to these three viruses were further assembled into three scaffolds of 14,224 nt, 1107 nt, and 753 nt for PBNSPaV, MuVA, and PLPaV, respectively. The scaffold of PBNSPaV (MW217574) nearly covered the whole genome of the isolate VIC3 from Australia (LC523039.1) (Kinoti et al. 2020) with 92.30% of sequence identity; the scalffold of MuVA (MW217572) covered 14.50% of the genome of the isolate pm14 from Japan (NC 040568.1) (Marais et al.2018) with 98.47% sequence identity; the scaffold of PLPaV (MW217573) covered 15.26% of the genome of the isolate XJ-6 from peach (KY867750.1) (He et al. 2017) with 85.23% sequence identity. Presence of the three viruses were verified by RT-PCR detection using designed specific primers for PBNSPaV (Forward: 5'-CAACAAAACTCCCACAGCGG-3 [positions 4014-4033, NC_009992.1] / Reverse: 5'-GCCAAAAGAAGTGCTGGTGG-3' [positions 4659-4640, NC_009992.1]), MuVA (Forward: 5'-AAGAGAATTACTTCAATGCCCTC-3' [positions 171-194, NC_040568.1] / Reverse: 5'-GATATCCAAGATACGATTAGCCAG-3' [positions 533-510, NC_040568.1]), and PLPaV (Forward: 5'-GCTATATCTCAACAACTGCAAGAA-3 [positions 5798-5821, KY867750.1] / Reverse: 5'- GAGTGATACATAGTCCACAGAGAT-3'[ positions 6045-6022, KY867750.1]). The amplified 626, 350 and 251 bp fragments of PBNSPaV, MuVA and PLPaV had 91.47%, 98.07% and 81.89% sequence identity to their respective reference sequences. This is the first report of PBNSPaV and MuVA infecting mei in China, and more importantly, the first report of a new host for PLPaV. In addition, 30 collected leaf samples from Nanjing and Wuhan were analyzed by RT-PCR and 15, 6, and 5 samples tested positive to PLPaV, PBNSPaV, and MuVA, respectively. Although it is difficult to link a particular virus with the observed symptoms due to mixed infections, the symptoms were significantly associated with viral infection because almost all symptomatic leaf samples were virus(es)-positive. Further studies would be required to determine the distribution and impact of these viruses on mei trees and other stone fruits species and to understand the possibility that mei trees may play a role in PLPaV epidemiology.
梅(Prunus mume Sieb. et Zucc.)在东亚国家广泛分布,兼具结果和开花价值,但易受病毒感染(Marais等人,2018年)。在日本,由于花发育不完全、坐果率低和脉间黄化,李子树皮坏死茎点刻相关病毒(PBNSPaV)或小樱桃病毒2(LChV - 2)感染可能导致梅的总产量下降(Numaguchi等人,2019年)。2017年至2018年春季和初夏,在北京、武汉、无锡和南京的梅树上观察到了类似病毒病,叶片出现花叶、脉间黄化、叶脉变清或坏死斑。从这四个地区采集的有症状叶片作为两个样本合并用于RNA测序(RNA - seq)分析。使用TRNzol试剂(天根,中国)提取的总RNA在去除核糖体RNA(rRNA)后,使用NEBNext Ultra RNA文库制备试剂盒(NEB,马萨诸塞州,美国)进行文库构建,并在Illumina Hiseq 4000(诺禾致源,中国)上测序。测序数据按照先前描述的方法(Zhou等人,2020年)进行过滤、筛选和组装以生成重叠群,随后在GenBank的病毒基因组中进行BLAST - x/n搜索。我们鉴定出300多个与亚洲李属病毒1和亚洲李属病毒2(APV1和2)、梅病毒A(MuVA)、PBNSPaV以及桃叶点刻相关病毒(PLPaV)同源的重叠群(208 - 10756 nt),核苷酸序列同一性值为71 - 100%。APV1和2在中国的梅中已有报道(Wang等人,2018年),在此,我们重点关注其他三种病毒。与这三种病毒同源的重叠群进一步组装成三个支架,PBNSPaV、MuVA和PLPaV的支架长度分别为14224 nt、1107 nt和753 nt。PBNSPaV的支架(MW217574)与来自澳大利亚的分离株VIC3(LC523039.1)(Kinoti等人,2020年)的全基因组几乎覆盖,序列同一性为92.30%;MuVA的支架(MW217572)覆盖了来自日本的分离株pm14(NC 040568.1)(Marais等人,2018年)基因组的14.50%,序列同一性为98.47%;PLPaV的支架(MW217573)覆盖了来自桃的分离株XJ - 6(KY867750.1)(He等人,2017年)基因组的15.26%,序列同一性为85.23%。使用针对PBNSPaV(正向:5'-CAACAAAACTCCCACAGCGG - 3 [位置4014 - 4033,NC_009992.1] / 反向:5'-GCCAAAAGAAGTGCTGGTGG - 3' [位置4659 - 4640,NC_009992.1])、MuVA(正向:5'-AAGAGAATTACTTCAATGCCCTC - 3' [位置171 - 194,NC_040568.1] / 反向:5'-GATATCCAAGATACGATTAGCCAG - 3' [位置533 - 510,NC_040568.1])和PLPaV(正向:5'-GCTATATCTCAACAACTGCAAGAA - 3 [位置5798 - 5821,KY867750.1] / 反向:5'- GAGTGATACATAGTCCACAGAGAT - 3'[位置6045 - 6022,KY867750.1])设计的特异性引物,通过RT - PCR检测验证了这三种病毒的存在。PBNSPaV、MuVA和PLPaV扩增的626、350和251 bp片段与其各自参考序列的序列同一性分别为91.47%、98.07%和81.89%。这是PBNSPaV和MuVA感染中国梅的首次报道,更重要的是,这是PLPaV新宿主的首次报道。此外,对从南京和武汉采集的30个叶片样本进行RT - PCR分析,分别有15、6和5个样本对PLPaV、PBNSPaV和MuVA检测呈阳性。尽管由于混合感染难以将特定病毒与观察到的症状联系起来,但这些症状与病毒感染显著相关,因为几乎所有有症状的叶片样本都呈病毒阳性。需要进一步研究以确定这些病毒在梅树和其他核果类物种中的分布和影响,并了解梅树在PLPaV流行病学中可能发挥的作用。